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Graphical Abstract:  

 

Note: The percentage changes of (a) environmental inefficiency score, (b) GDP, and (c) emission 

intensity of seven Chinese regions when changing emission charge policy from pollutant 

discharge fees to environmental taxes.  

 

Abstract: Emission charge policy has recently switched from pollutant discharge fees to 

environmental taxes in China. Considering spatial heterogeneity, the effects of changes in 

emission charge policy may subject to different Chinese regions. In this study, environmental 
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efficiencies of Chinese regions are evaluated through provincial environmentally extended 

input-output tables and a frontier-based optimization model. Driving factors of environmental 

productivity growth are identified through global Luenberger productivity decomposition 

approach. Moreover, spatial heterogeneity on the effects of change in emission charge policy on 

environment and economy are assessed. Results show that all regions experienced environmental 

productivity growth. Technology progress is the major driving factor in most regions with an 

average contribution of 90%, while technical efficiency regress slows environmental productivity 

growth in Southwest region. Switching from pollutant discharge fees to environmental taxes 

would decreases emission intensities by 1.42% on average, but it would have different negative 

impact on economic growth (-1.13%~-4.90% of regional GDP) due to spatially heterogeneous 

trade-offs between environmental protection and economic development. Addressing such spatial 

heterogeneity provide not only a basis for diversified tax rate determination but also a framework 

for other environmental policy assessment.  

Keywords: environmental efficiency; emission charge policy; productivity decomposition; IOA; 

DEA  

 

1. Introduction  

Industrialization and urbanization caused by rapid economic development lead to 

over-energy consumption in China. Currently, China is the biggest country of energy consumption 

in the world, ranking the top of the growth in global energy consumption for 17 years (BP, 2018). 

In 2017, China accounted for 23.2% and 33.6% in the global energy consumption and the growth 

in global energy consumption, respectively (BP, 2018). Due to the excessive energy consumption, 

environmental pollutions are becoming increasingly serious in China, especially air pollutions and 

water pollutions. During the 12th Five-Year period, China dominated approximately 30% of 

global sulfur dioxide (SO2) emission and 20% of global nitrogen oxides (NOx) emission per 

annum (Zhang et al., 2018). Meanwhile, particulates emissions, including soot and dust (SD) 

(Liang et al., 2016) and particulate matter (Song et al., 2017) are also at high levels in China. 

Because of the severe air pollutions, the number of heavy pollution days raise continually and 

about one third of Chinese cities struggle with fog and haze issues (Xie et al., 2018). Beside air 

pollutions, series of water pollutions intensify the problem of scarcity of drinking water supply. 

For instance, the Yangtze River, which is the source of drinking water for up to 800 million (M) 

people, undertakes the most proportion of national water polluted industrial activities (Chen et al., 

2018b). As a result of water pollution, there are about 190M people fall sick and 60 thousand 
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people die each year in China (Tao & Xin, 2014). Moreover, heavy metal pollutions like Hg, Cd, 

Pb, As, Cu, and Zn are other factors of public health risk (Li et al., 2014).  

Facing severe environmental and ecological problems and their effects on public health, 

Chinese government has enacted laws and implemented policies to handle environmental 

problems since the last century (Feng & Liao, 2016). For example, in order to control emissions, 

Air Pollution Prevention and Control Action Plan has been issued in 2013 and Environmental 

Protection Law has been implemented in 2015 in China, which have pressured local authorities to 

increase penalties for environmental violations. Additionally, Chinese government has set explicit 

emission reduction targets for major pollutions since the 11th Five-Year Plan (Yang et al., 2018). 

And ecological protection targets are completed in the 13th Five-Year Plan for Eco-environmental 

Protection. Those policies did have positive effects on slowing down the rate of emission growth 

to some extent. In 2017, carbon emission increased 1.6% in China, which was the half of the 

average rate over the past decade (BP, 2018). Other pollutions met the corresponding emission 

targets as well (Wang et al., 2014). However, environmental policies associated with emission 

abatement and environmental protection will limit production and further reduce economic growth, 

in other words, there are trade-offs between environmental protection and economic development. 

It has been confirmed that strict environmental policies would have a negative impact on GDP in 

China (Ahmed & Ahmed, 2018).  

Therefore, both economic and environmental perspectives need to be contained in order to 

have a more comprehensive estimation of policy effects. Environmental efficiency is one of the 

solutions to measure policy effects on economy and environment. In this study, environmental 

efficiency is defined as the improved potential to achieve more industrial outputs with less 

resource inputs as well as more emission abatement. Methods of efficiency estimation can be 

roughly divided into statistical approaches (Semenyutina et al., 2014), parametric analysis, e.g. 

linear programming (Du & Mao, 2015), parametric meta-frontier analysis (Du et al., 2016), and 

parametric hyperbolic distance function approach (Duman & Kasman, 2018), and non-parametric 

analysis. Data envelopment analysis (DEA) is a widely used non-parametric approach to measure 

sector-varying (Bi et al., 2014), region-varying (Chen & Jia, 2017), or time-varying (Wang et al., 

2013) environmental efficiency. Furthermore, DEA can also be improved by combing life cycle 
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assessment (Lorenzo-Toja et al., 2018), input-output analysis (IOA) (Xing et al., 2018), and index 

or statistical analysis (e.g. Malmquist index used in Woo et al. (2015); bootstrapping approach 

applied in Yang & Zhang (2018)). However, studies mentioned above have certain limitations. 

First, the results were probably biased because environmental efficiencies were measured under 

the independent constraints of economy and environment. Second, the sensitivity to environmental 

policy depends on different industrial sectors, high energy intensity sectors and high emission 

sectors tend to be strongly influenced by environmental policies. But the difference among 

industrial sectors and the material flow existed in industrial sectors are neglect. Third, there is 

obvious heterogeneity among different regions in China, environmental efficiency measured at 

national level cannot figure out the regional diversity.  

In this study, in order to measure environmental efficiency in view of the inter-sector 

heterogeneity and material flow existed in industrial sectors, we combine IOA and DEA and 

propose a frontier-based optimization model with uniform formulations of both economic and 

environmental constraints. For purpose of evaluating effects of emission charge policies on 

environment and economy, we estimate environmental efficiencies in seven geographical regions 

in China (the region category is attached in Table S1) using this optimization model. First, we 

calculate the environmental inefficiency scores of seven Chinese regions through the conventional 

model and the improved optimization model. Then, in order to evaluate the environmental 

productivity change of each region, we decompose the driving factors of environmental 

inefficiency score measured by DEA into technical efficiency change (EC) and best practice gap 

change (BPC) by using global Luenberger productivity indicator (GLPI). Finally, we compare the 

changes of environmental efficiency, GDP and the emission intensity under different emission 

charge policies and evaluate the synergistic effects of pollutant emission and carbon emission 

reduction.  

This study contributes to the existing research at the theoretical and the application level in 

the following aspects. First, taking spatial heterogeneity and the trade-offs between economic 

development and environmental protection into consideration, the effects of switching pollutant 

discharge fees for environmental taxes are assessed. Second, the compiled environmentally 

extended input-output tables for 30 Chinses provinces distinguish abatement costs and 
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environmental benefits from monetarily valued material flows among various industrial sectors. 

Third, the frontier-based optimization model provides a framework of environmental efficiency 

measurement which has the uniform and connective constraints of economy and environment. 

Based on this model, an environmental efficient benchmark could be obtained, so that different 

policy scenarios could be compared without the impacts of efficiency change. Fourth, 

environmental productivity growth and its driving factors are identified based on Luenberger 

productivity indicator.  

 

2. Methods and data  

2.1. Environmentally extended input-output analysis for efficiency measurement  

Environmentally extended input-output analysis (EEIOA) is widely applied to assess the 

environmental impacts related to energy consumption (Chen et al., 2018a), pollutant emission, e.g. 

CO2 (Meng et al., 2018) and mercury emissions (Li et al., 2015), efficiency measurement 

(Aguilar-Hernandez et al., 2018), and improved potential evaluation at regional level (Mi et al., 

2015) or national level (Mi et al., 2017). The advantage of EEIOA is that the relationship between 

environment and economy is treated in one unitary and closed monetarily valued material flow. 

Besides, each sector’s characteristics can be captured through multi-sector input-output table. In 

addition, impacts of environmental policies include both the effects of policy itself and the effects 

of efficiency changes associated with policy reform. Thus, in order to evaluate the effects of 

environmental policy itself on environment and economy, the impacts of efficiency change 

required to be eliminated, so that different policy scenarios could be compared under the same 

environmental efficient benchmark. Therefore, frontier-based optimization model is developed by 

combing EEIOA and DEA to calculate environmental inefficiency score. The framework is 

illustrated as in Figure 1.  
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Figure 1. The research framework. Conventional model and Frontier-based optimization model is 

represented as model (1) and model (2), respectively.  

Taking the reference of Mahlberg & Luptacik (2014), the conventional model (model (1)) is 

proposed with the separate emission constraint and economic constraint based on the conventional 

input-output table. δ is environmental inefficiency score, indicating the improved potential away 

from the frontier of the specific year to be analyzed. x is the n×1 total output vector, while e is the 

m×1 total produced pollution vector. A is the n×n intermediate use coefficient matrix, indicating 

the intermediate use per unit of total output of each industrial sector. EI is the m×n emission 

intensity matrix, showing the emission per unit of total output of each industrial sector. While B is 

the k×n primary input coefficient matrix, representing the primary input per unit of total output of 

each industrial sector. n, m, and k stand for the number of industrial sector, the kind of emission, 

and the number of primary input, respectively. In this study, n, m, and k equals to 42, 16, and 4, 

respectively. Notations with superscript 0 are parameters. IM0, IF0, ERR0, and TFU0 come from 

the conventional input-output table, meaning imports vector, inflow vector, error vector and total 

final use vector of industrial sector, respectively. AT0 is the m×1 emission abatement target, while 

z0 is the k×1 social available vector. This model aims at optimizing the environmental inefficiency 

score. The first constraint means that for each industrial sector, the optimal total output minus 

Frontier-based optimization model

Conventional model

Luenberger productivity indicator

Environmental taxes

Pollutant discharge fees

2012

2007

Environmental 

efficiency 

calibration

Environmental 

productivity 

decomposition

Environmental 

policy 

simulation

Frontier-based optimization model 2012

Environmental taxes

Frontier-based optimization model

Aims Methods Policies Years

Environmental taxes

2012



7 

 

intermediate use should not be less than the observed total final use. The second constraint means 

that for each pollutant, the optimal produced pollution minus emission load should not be less than 

the observed abatement target. While the third constraint means that for each primary input, the 

optimal primary input should not be higher than the observed social available resource. In this 

model, all economic variables and parameters are valued in monetary unit Yuan, while all 

environmental variables and parameters are valued in physical unit kg-equivalent.  
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    (1)  

As mentioned before, the conventional input-output table cannot figure out emission 

abatement cost and abatement benefit. Besides, inputs for productive activities and inputs for 

abatement activities cannot be identified as well. That is to say, the environmental value is 

aggregated with productive value in the conventional input-output table.  

In order to distinguish inputs for emission abatement and quantify environmental value, we 

establish environmentally extended input-output tables (Wang et al., 2018) for each Chinese 

province in 2007 and 2012 by introducing sixteen emission abatement sectors (see Table S2). 

Intermediate inputs from industrial sectors to emission abatement sectors are served by emission 

abatement costs, while intermediate inputs from emission abatement sectors to industrial sectors 

are presented by emission charges, which can be understood as emission rights. Regarding final 

outputs of emission abatement sectors, environmental benefits associated with emission abatement 

denote the total final use of emission abatement sectors. Additionally, total outputs and primary 

inputs of emission abatement sectors are calculated through the balance of Leontief input-output 

matrix. Thus, monetary values of environment and economy can be provided through an 

integrated and balanced input-output matrix.  

Based on these environmentally extended input-output tables, an improved environmental 

efficiency measured model is proposed as model (2). Compared with the conventional model, the 
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improved one has two significant superiorities. First, it is capable of capturing the interrelated 

relationship between environment and economy under one integrated framework. Any changes in 

emission control and emission discharge affected by environmental policy will have an effect on 

material flow among industrial sectors, and this effect can be measured in the extended 

input-output table and the improved model. Second, the improved model distinguishes inputs for 

emission abatement and separates environmental values (such as emission abatement cost and 

emission charge) from productive values. Moreover, all variables and parameters in model (2) are 

valued in monetary unit Yuan.  
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    (2)  

Here, all notations are derived from the environmentally extended input-output table. The 

subscript t is a symbol of the accounting periods, which will be detailed explained in Section 2.2. 

δt, 
0

tIM , 
0

tIF , 
0

tERR , 
0

tz  have the same meanings as in model (1). x1 and x2 serves as n×1 

total output vector of industrial sector and m×1 total output vector of emission abatement sector 

(environmental value), respectively. Similarly, TFU1 and TFU2 represents total final use of 

industrial sector and total final use of emission abatement sector (environmental benefit associated 

with emission abatement), respectively. B1 and B2 show primary input coefficient matrixes of 

industrial sector (k×n) and emission abatement sector (k×m). A11 is the n×n intermediate input 

coefficient matrix from industrial sector to industrial sector, which has the same meaning but 

different value with A in model (1) because of the environmental extension. A12 is the n×m 

intermediate input coefficient matrix from industrial sector to emission abatement sector, 

representing emission abatement cost per unit of environmental value. A21 is the m×n intermediate 

input coefficient matrix from emission abatement sector to industrial sector, denoting emission 

charge per unit of total industrial output. A22 is the m×m intermediate input coefficient matrix 

from emission abatement sector to emission abatement sector, which is a zero valued matrix 
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because environmental taxes are levied at economic sectors and abatement costs (or environmental 

taxes) related to secondary emission during abatement process are included in economic sectors. 

The formulation of model (2) is similar with model (1), except the second constraint. Since all 

environmental concepts are quantified monetarily in the improved input-output table, the second 

constraint gives the lower bound of abatement benefit instead of the physical valued emission 

abatement target of each emission abatement sector, denoting the optimal environmental value 

minus emission charge should not be less than the observed abatement benefit.  

 

2.2. Luenberger productivity indicator for driving factors decomposition  

Changes of environmental inefficiency score between different years indicates the 

improvement or deterioration of environmental productivity. One of the aims of this study is to 

evaluate the environmental productivity change of each region over two separate years, which are 

2007 and 2012. For this purpose, taking the reference of Wang et al. (2016), we define the global 

Luenberger productivity indicator (GLPI) over the two years to measure the change of 

environmental productivity. GLPI is superior to the traditional Luenberger productivity indicator 

in solving several problems such as failing circularity, spurious technical regress and infeasible 

situation (Wang & Wei, 2016). Equation is shown as follows:  

1, 2, 1, 1 2, 1 1, 2, 1 1, 1 2, 1( , ; , ) ( , ) ( , )G G

t t t t t t t t t tGLPI x x x x x x x x           (3)  

The progress of environmental productivity could be explained as the reduction of 

environmental inefficiency score. Thus, the difference of global environmental inefficiency scores 

between the two years is used to measure the environmental productivity change. The positive, 

negative, and zero values mean improvement, deterioration, and invariability of environmental 

productivity, respectively. 
G  is the global environmental inefficiency score and can be 

calculated by model (4), indicating the improved potential away from the frontier of the panel data 

set for a period. 1, 2,( , )G

t t tx x  and 1 1, 1 2, 1( , )G

t t tx x     are distinguished by the two separate 

periods t and t+1. In this study, t and t+1 represent 2007 and 2012, respectively.  
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    (4)  

Model (4) is the optimization model for global environmental inefficiency score. The 

subscript t is a symbol of the exact year to be analyzed. All constrains are same as those in model 

(2) except the definition of 
0

Tz . In model (2), 
0z  is the social available vector of a specific year. 

While in model (4), 
0

Tz  is the maximum value of social available vector during a period 

(between t and t+1 in this study), providing the global input frontier. Solving model (4) twice for 

year t and t+1, the two years’ global environmental inefficiency scores can be obtained.  

Furthermore, in order to figure out the main driving factors of the environmental productivity 

change in each region, GLPI is decomposed into efficiency change (EC) and best practice gap 

change (BPC), which are illustrated in Eqs. (5) and (6). EC is the difference of the two separate 

periods of environmental inefficiency scores (δt). While BPC is the difference of the two separate 

periods of the distance between global environmental inefficiency scores (
G

t ) and environmental 

inefficiency scores (δt).  

1, 2, 1 1, 1 2, 1( , ) ( , )t t t t t tEC x x x x          (5)  

1, 2, 1, 2, 1 1, 1 2, 1 1 1, 1 2, 1[ ( , ) ( , )] [ ( , ) ( , )]G G

t t t t t t t t t t t tBPC x x x x x x x x                (6)  

EC is the average gain or loss related to the technical efficiency change from period t to 

period t+1, capturing the movement with the same or opposite direction of the technology frontier. 

BPC is the average gain or loss due to the technology change from period t to period t+1, 

indicating the best practice gap change between the global technology frontier and each period’s 

technology frontier (Wang et al., 2016). The positive (or negative) values of EC and BPC 

represent technical efficiency increase (or decrease) and technology progress (or regress), 
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respectively.  

 

2.3. Data sources  

Chinese provincial input-output tables are issued every five years by Department of National 

Economic Accounting, National Bureau of Statistics of China. The last two issues of provincial 

input-output tables with 42 industrial sectors of 30 Chinese provinces in 2007 and 2012 are used 

as the basic economic datasets. The sector category is in line with that in 2012 input-output tables 

(see Table S2). Given that labour and capital are the main sources of extensible primary inputs, the 

social available resource z0 is calculated based on the weighted average of the extensible rates of 

labour and capital with the weight equaling to the proportion of each primary input to the total 

primary input. The extensible rates for the whole country and 30 regions are measured based on 

unemployed population and depreciation of original value of fixed assets, approximately ranging 

from 10% to 50%. For easier discussion, we assume the same extensible rate in all primary inputs 

and all provinces, thus we take 30% as the extensible rate of primary input and 130% as the social 

available resource z0.  

As for environmental data, we get the national emission loads of the sixteen pollutants in 

2007 and 2012 from Chinese Environmentally Extended Input‐Output (CEEIO) Database (Liang 

et al., 2017). Values of national emission abatement cost come from Department of Industry 

Statistics of National Bureau of Statistics of China and are distributed to each pollutant by their 

emission proportion. We allot the national emission loads and national emission abatement cost to 

provincial ones by the provincial energy consumption proportion. Total final use of emission 

abatement sector (environmental benefit associated with emission abatement) is measured by the 

product of emission abatement load and the health costs per unit of emission. According to World 

Bank (2007), total health costs of air pollution and water pollution in China is 3.8% of GDP and 

2.0% of GDP, respectively.  

 

2.4. Pollutant equivalents transformation  
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Given that each pollutant has different environmental effects, same emission loads of 

different pollutants will pose different degrees of negative impacts on environment. Thus, it is 

necessary to unify the negative effects of various pollutants on environment and public health. 

China’s Ministry of Environmental Protection published a list of taxable pollutants and the 

corresponding “pollutant equivalent”, which could be applied to transfer the physical units (Ephy) 

of emission loads of different pollutants to the equivalent units (Eequ) according to their 

environmental and health impacts (Zhang et al. 2018). The equivalent units (k) are listed in Table 

S3, serving as the coefficients to divide emission loads in physical units (Ephy): Eequ=Ephy/k.  

 

3. Results  

3.1. Environmental efficiency calibration  

Figure 2 shows the bias degrees of improved potential at regional level. Improved potential 

implies the distance between optimized value and observed value. The conventional model tends 

to underestimate environmental inefficiency score, economic indicators (GDP and total output), 

and environmental indicators (emission and emission intensity). The bias degree of environmental 

inefficiency score is not obvious. Specifically, the biased degree of environmental inefficiency 

score in South coast region rank the top, valued -21%. While the biased degree of emission 

intensity is large, which is -48% in Northeast region, -4% in North region, 362% in East coast 

region, -85% in South coast region, -64% in Central region, -35% in Northwest region, and -333% 

in Southwest region, respectively. It can be explained that values of emission intensity are too tiny, 

any small changes would result in large bias degrees. From the spatial heterogeneity perspective, 

the conventional model is inclined to underestimate indicators of most regions, but overestimate 

indicators of economically developed region. Specifically, bias degree in East coast region of 

environmental inefficiency score, GDP, total output, emission, and emission intensity is 3%, 14%, 

41%, 86%, and 362%, respectively. Besides, the bias degrees of five indicators in North region is 

the lowest. Over all, the improved model corrects the overestimated economic and environmental 

indicators in East coast region, and corrects the underestimated economic and environmental 

indicators in other regions.  
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Figure 2. The bias degree of improved potential of model (1) over model (2) in seven Chinese 

regions. Five indicators are considered, which are environmental inefficiency, GDP, total output, 

emission, and emission intensity. Improved potential dominates the difference between optimal 

value and observed value. Values in this figure are measured through dividing the difference 

between the improved potentials of model (1) and model (2) by the improved potential of model 

(2), representing the bias degree of improved potential of model (1) compared with model (2). The 

positive (or negative) value means that model (1) overestimates (or underestimates) the 

corresponding indicator.  

 

3.2. Environmental productivity decomposition  

Figure 3 displays the environmental productivity change and the corresponding driving 

factors of each region. North region and Northwest region are the bottom two regions in 

environmental productivity progress, valued 0.0860 and 0.0994 in GLPI, respectively (see Table 

1). It is because that industrial-oriented economic structures in these regions pose negative effects 

on environment and further on environmental efficiency. For instance, North region has intensive 

high energy consumption and high emission enterprises, such as thermal power plants, coking 

factories and large installed electricity generation facilities (Liu et al., 2018). Specially, the large 
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vehicle population in Beijing and the high level of agricultural and animal activities in Hebei and 

Henan provinces aggravate emission degree in North region (Liu et al., 2018). Besides, the 

developed mining and oil processing industries produce serious environmental pollution due to the 

rich mineral resources in Northeast region.  

 

Table 1 Environmental inefficiency score and the driving factors decomposition. Environmental 

inefficiency scores of the two specific periods are calculated by model (2). Environmental 

productivity changes from 2007 to 2012 are represented by GLPI, which is measured by model (4). 

Two driving factors BPC and EC are decomposed from GLPI by Eqs. (5) and (6).  

Region Environmental 

inefficiency score 

BPC EC GLPI Percentage 

contribution (%) 

2007 2012 BPC EC 

Northeast 0.0924 0.0897 0.1147 0.0025 0.1172 97.87 2.13 

North 0.0850 0.0783 0.0787 0.0073 0.0860 91.51 8.49 

East coast 0.0691 0.0691 0.1320 0.0016 0.1336 98.83 1.17 

South coast 0.0870 0.0393 0.0672 0.0478 0.1149 58.45 41.55 

Central 0.0962 0.0968 0.1673 -0.0004 0.1668 100.26 -0.26 

Northwest 0.0854 0.0722 0.0868 0.0126 0.0994 87.34 12.66 

Southwest 0.0559 0.0957 0.2493 -0.0392 0.2101 118.64 -18.64 

 

 

Figure 3. Environmental productivity indicators of seven Chinese regions. The bars outlined in 

black show GLPIs. The purple colored bars and yellow colored bars represent BPCs and ECs, 

respectively. GLPI is the sum of EC and BPC. The positive and negative values of GLPI stand for 

environmental productivity growth and reduction, respectively. The positive (or negative) values 

of EC and BPC represent technical efficiency increase (or decrease) and technology progress (or 

regress), respectively.  
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Furthermore, according to the positive or negative driving factors, the seven Chinese regions 

can be divided into three modes, which are technology dominant mode (mode one), efficiency 

impeditive mode (mode two), and co-driven mode (mode three). Most of the regions belong to 

mode one, except South coast region and Southwest region. According to GLPI, environmental 

productivity increases by 0.1172 in Northeast region, 0.0860 in North region, 0.1336 in East coast 

region, 0.1668 in Central region, and 0.0994 in Northwest region, respectively. And technical 

improvement dominates 97.87%, 91.51%, 98.83%, 100.26%, and 87.34%, respectively (see Table 

1). Since the 1980s, in order to comply with the international development tendency and 

reconstruct national economic development structure as well as redevelop an 

environmental-friendly oriented economy, China has implemented the following development 

strategies successively: Coastal Development Strategy for Eastern coast region, the Great Western 

Development Strategy for Northeast region and Northwest region, Revitalization of the Old 

Northeast Industrial Base Strategy for Northeast region, and Mid-China Rising strategy for 

Central region. This series of strategies encourages local factories to renovate technology and 

eliminate backward productive technique. Thus, the best practice gap compared with regions in 

the frontier has been narrowed and the technology progresses a lot.  

Southwest region belongs to mode two due to the negative EC (valued -0.0392). However, 

GLPI of Southwest region (0.2101) is the highest over the seven regions, even if the technical 

efficiency change has a passive effect on environmental productivity progress. The high level of 

environmental productivity progress in Southwest region might be correlated with the excellent 

resource endowment and environmental conditions. It has been pointed out that the abundant 

energy and forest resources and well-developed clean electricity generation method of hydropower 

lead to low carbon emission (Tao et al., 2016), and further lead to high environmental efficiency. 

However, the industrial development actions which have negative impacts on the local 

environment leads to a significant decline in technical efficiency. For example, the establishment 

of the large petrochemical industrial base has resulted in air and water pollution in Sichuan 

province. Moreover, pollutant emissions from local phosphorus chemical industry generates 

chronic poisoning to nearby residents and livestock in Yunnan province.  
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Mode three includes South coast region. The two driving factors have similar effects on 

environmental productivity change in this region. More specific, BPC and EC contribute to 

environmental productivity progress by 58.45% and 41.55%, respectively. On one hand, from the 

national trade perspective, South coast region is the outflow place of air pollution and solid waste 

(Wu, 2016). On the other hand, because of the superior geographical position and abundant capital, 

South coast region can timely learn advanced emission control technology. Thus, technical 

efficiency progress and technology improvement promote environmental productivity at the same 

time.  

 

3.3. Effects evaluation of emission charge policies on economy and environment  

In this study, two emission charge policies are considered, which are pollutant discharge fees 

and environmental taxes. From the beginning of 2018, environmental taxes policy has been 

implemented with the enaction of “Environmental Protection Tax Law”, replacing the pollutant 

discharge fees policy which was implemented from 2003. The environmental taxes policy 

formulates environmental tax rate for each taxable pollution. It has been decided that the range of 

environmental tax rates of air pollution and water pollution is from 1.2 Yuan/ kg-equivalent to 12 

Yuan/ kg-equivalent and from 1.4 Yuan/ kg-equivalent to 14 Yuan/ kg-equivalent, respectively. 

While the pollutant discharge fees of air pollution and water pollution is 0.6 Yuan/ kg-equivalent 

and 0.7 Yuan/ kg-equivalent, respectively. The detailed tax rates of different pollutions in different 

provinces are listed in Table S4.  
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Figure 4. The percentage changes of (a) environmental inefficiency score, (b) GDP, and (c) 

emission intensity of seven Chinese regions when changing emission charge policy from pollutant 

discharge fees to environmental taxes. The black thick lines are the regional boundaries, while the 

grey thin lines are the provincial boundaries. Blocks in grey are not included in our study due to 

the lack of data, which are Tibet, Taiwan, Hongkong, and Macao, respectively. Darker colored 

block represents higher percentage change. The range of percentage change of each hierarchical 

color is shown as the legend.  

 

In order to evaluate the effects of the increased tax rates of various pollutions on efficiency, 

economy, and environment, we calculate the percentage changes of environmental inefficiency 

scores, GDP, and emission intensity of seven Chinese regions when changing environmental 

policy from pollutant discharge fees to environmental taxes policy (shown as Figure 4). 

Percentage changes of environmental inefficiency score stand for the effect of environmental 

policy on environment, percentage changes of GDP reveal the effect of environmental policy on 

15

(0, -1%]

(-1%, -2%]

(-2%, -3%]

(-3%, -4%]

(-4%, -5%]

(-5%, -10%]

(-10%, -50%)

no data

Northwest

-5.08%

Southwest

-4.06%

North

-2.04%

Northeast

-4.20%

Central
-4.20%

East coast

-7.78%

South coast
-42.25%

Northeast

North

Northwest

Southwest
Central

East coast

South coast

Northwest

North

Northeast

East coast
Central

Southwest

South coast

-1.21%

-1.85%

-2.21%

-2.60%

-2.02% -1.13%

-4.90%

-1.36%

-1.07%

-0.77%

-0.96%

-0.78% -2.02%

-3.00%

(a) Environmental inefficiency score (b) GDP

(c) Emission intensity



18 

 

economic development, while percentage changes of emission intensity show the complex effect 

on both environment and economy. It can be seen that raising emission charge, environmental 

inefficiency scores would have obvious declines, and emission intensity would be decreased by 

1.42% on average. We further calculate the median for each indicator, which is illustrated in Table 

2. According to the relationship between absolute values and median of each indicator, these seven 

regions can be additionally divided into four patterns, which are high economic effect – high 

environmental effect (H-H) pattern, high economic effect – low environmental effect (H-L) 

pattern, low economic effect – high environmental effect (L-H) pattern, and low economic effect – 

low environmental effect (L-L) pattern.  

 

Table 2 Percentage changes and medians of three indicators. Absolute values which are higher 

than median represent that changes in these regions are more obvious, while the opposite means 

that changes in those regions are less significant.  

Region Environmental inefficiency score GDP Emission intensity 

Northeast -4.20% -2.60% -0.96% 

North -2.04% -2.21% -0.77% 

East coast -7.78% -1.13% -2.02% 

South coast -42.25% -4.90% -3.00% 

Central -4.20% -2.02% -0.78% 

Northwest -5.08% -1.21% -1.36% 

Southwest -4.06% -1.85% -1.07% 

Median -4.20% -2.02% -1.07% 

 

South coast region belongs to H-H pattern, whose percentage change of environmental 

inefficiency score and GDP values -42.25% and -4.90% respectively. Besides, percentage change 

of emission intensity is the highest, indicating raising tax rates would have the lowest emission per 

unit of total output in South coast region. It is because that industries in South coast region adjust 

their productive structures and relocate factories’ sets due to the strict environmental regulation. 

Thus, the reduced emission affected by environmental policy poses positive effects on emission 

intensity. For example, in recent years, small sized enterprises are moved from Guangdong 

province to Hunan and Jiangxi province, which makes South coast region an outflow place of air 

pollution transfer (Wu, 2016). H-L pattern includes Northeast region and North region. They have 

high percentage changes of GDP, valued -2.60% and -2.21%, but low percentage changes of 



19 

 

environmental indicators. Economic development structures of Northeast region and North region 

depend mainly on heavy industry and conventional energy structure. Industrial productive 

activities are relied on an over-consumption of fossil fuel combustion (Wang & Zhao, 2017). 

However, the increase of emission charge makes enterprises reduce production intensity to reduce 

emission. Therefore, the low production intensity delays the speed of economic development. 

While L-H pattern contains Northwest region and East coast region, which rank the last two 

regions in percentage change of GDP. Regarding to East coast region, it has adequate financial 

support and advanced productive technology. Hence, the developed emission abatement technique 

can satisfy the abatement target instead of reducing production intensity to avoid emission. 

Moreover, L-L pattern includes Central region and Southwest region. In this pattern, all indicators’ 

percentage changes are at low levels, indicating the weak effect of environmental policies on 

environmental protection and economic development. On one hand, raising emission charge 

would reduce the local emission and increase the environmental efficiency. On the other hand, 

raising environmental tax rates would lead to the reconstruction of the national industrial 

production layout, pollution would be transferred to Central region and Southwest region due to 

the emission leakage effect. Thus, local emission would increase and environmental efficiency 

would decrease. Therefore, the percentage changes of all indicators are not obvious because the 

positive effects neutralize the negative effects.  

 

 

Figure 5. The synergistic effects of different emission charge policies on carbon emission 

reduction. The hierarchical color shows the percentage change of carbon emission associated with 

total output when raising emission charge from pollutant discharge fees to environmental taxes. 

Rows mean regions, while columns represent industrial sectors (see Table S2).  
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From the above results we can see that, tightening emission charge policy would reduce 

emission and reduce total output at the same time because of the trade-offs between environment 

and economy. As we know, industrial productive processes are often accompanied by various 

emissions, especially carbon emission. Thus, the reduction in total output due to the higher taxes 

of environmental pollutions would also have synergistic effects on carbon emission reduction. For 

purpose of discussing this effect of different sectors in different regions, we measure the 

percentage change of carbon emission associated with total output under pollutant discharge fees 

policy and environmental taxes policy (see Figure 5). In this study, we only consider the 

synergistic effects of carbon emission reduction due to the total output reduction, other factors 

such as abatement technical improvement or trade diversion are not included. Besides, we assume 

that carbon emission factor is fixed under different emission charge policies. As reflected from 

Figure 5, carbon emission in all regions decreases significantly in agriculture sector (code 01), 

valued -11.18% in Northeast region, -6.37% in North region, -15.96% in East coast region, -44.06% 

in South coast region, -9.96% in Central region, -11.72% in Northwest region, and -12.66% in 

Southwest region, respectively. Additionally, compared with other regions, carbon emission 

reduction in South coast region would be the most obvious, indicating that the emission charge 

policy would have more obvious effects on both environment and economy in South coast region, 

which, again, verifies the results in Section 4.2.  

 

4. Policy implications  

Some policy implications can be derived from the estimation of driving factors of 

environmental productivity: 1) for technology dominant regions, further actions should aim at 

increasing environmental efficiency. To do that, the local government should accelerate the 

transfer of industrial development structure from high energy-intensive structure to low energy- 

intensive structure by decreasing fossil fuels consumption and increasing clean energy 

consumption. 2) For efficiency impeditive regions, they should develop industries that meet local 

environmental requirements. More specific, reduction of iron production capacity, shutdown 



21 

 

coal-fired power plants, and replacement industrial boilers should be considered, which are 

consistent with the conclusions in Qi et al. (2017) and Liu et al. (2018). 3) For co-driven regions, 

they should promote pollution control technologies and experiences to assist other regions with 

low level of environmental efficiency to progress.  

Furthermore, some suggestions can be proposed from the analysis of economic and 

environmental impacts of emission charge policy: 1) for H-H regions, raising environmental tax 

rates are suggested since it could increase environmental efficiency obviously. Although GDP 

declines pronouncedly because of the trade-offs between environment and economy, the decrease 

of emission intensity indicates that environmental impact is greater than economic impact. 2) For 

H-L regions, environmental policies are advised to adjusted based on the local development 

targets. If the local strategy focuses on decreasing emission intensity and puts less emphasis on 

increasing GDP, then raising environmental tax rates is suggested. Otherwise, if economic 

development is the main target, then maintaining the current tax rates is the best choice. 3) For 

L-H regions, it is recommended to raise environmental tax rates because a higher tax rate would 

lead to a higher progression of environmental productivity and a lower regression of GDP. 4) For 

L-L regions, holding the current tax rates is advised if there is no need to reduce emission intensity 

immediately because both environmental impacts and economic impacts of raising environmental 

tax rates are tiny.  

 

5. Conclusion  

From 2007 to 2012, all regions experience environmental productivity progresses. Southwest 

region ranks the top in GLPI (valued 0.2101) because of the excellent resource endowment and 

environmental conditions. While North region is the least progressive region, valued 0.086 in 

GLPI, due to the conventional economic structure with high energy consumption and high 

emission. Furthermore, according to the driving factors of environmental productivity, seven 

regions can be divided into three modes. Northeast region, North region, East coast region, Central 

region and Northwest region belong to technology dominant mode. Technical improve greatly in 

these regions because local development strategies encourage them to renovate technology and 
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eliminate backward productive technique. Southwest region belongs to efficiency impeditive 

mode, indicating that technical efficiency poses a negative effect on environmental productivity 

progress. Industrial development actions like construction of high emission industrial bases in 

these regions lead to the regress of technical efficiency. South coast region belongs to co-driven 

mode. In this mode, technical efficiency change and technology change have similar contributions 

to environmental productivity progress due to the superior geographical position and abundant 

capital support for technical innovation and economic structure improvement.  

Additionally, according to the effect evaluation of emission charge policies on economy and 

environment, seven regions can be characterized into four patterns. H-H pattern covers South 

coast region, indicating both economic impact and environmental impact are at high levels. H-L 

pattern includes Northeast region and North region, representing the environmental impact is low 

but the economic impact is high. L-H pattern includes Northwest region and East coast region, 

which has the opposite meaning with H-L pattern. While, L-L pattern contains Central region and 

Southwest region, which has the opposite meaning with H-H pattern. Although the degree to 

which effects of emission charge policies on environment and economy are different in the 

specific region, the complex effect is positive since the percentage changes of emission intensity 

in all regions are decline when tightening the emission charge policy.  

Nevertheless, there are several limitations of this study. In order to reflect the material flow 

among various industrial sectors and figure out the impacts of environmental policy on economic 

production, input-output tables are chosen to be the basic economic dataset. The last two issues of 

provincial input-output tables of 30 Chinese provinces are in 2007 and 2012, thus, we choose 

these two years for the analysis. Considering the rapid economic development and changes in 

production structure, the illustrations would be more accurate using the more recent values if the 

data is available. Additionally, data related with emission abatement at sector level is incomplete. 

Thus, we have to assess some environmental variables of each sector based on hypothesis, leading 

to inaccuracy. Furthermore, material flow of different regions would lead to emission leakage 

embodied in trade. Future study can be conducted with the consideration of the material flow and 

emission leakage among multi-regions to figure out the effects of emission charge policy on 

multi-regional emission leakage and analyze the regional unfairness of emission charge policy.  
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Supporting information  

Table S1 Region category of 30 Chinese provinces  

Region Province Region Province 

Northeast Liaoning South coast Guangdong 

Northeast Jilin South coast Guangxi 

Northeast Heilongjiang South coast Hainan 
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North Beijing Central Henan 

North Tianjin Central Hubei 

North Hebei Central Hunan 

North Shanxi Northwest Shaanxi 

North Inner Mongolia Northwest Gansu 

East coast Shanghai Northwest Qinghai 

East coast Jiangsu Northwest Ningxia 

East coast Zhejiang Northwest Xinjiang 

East coast Anhui Southwest Chongqing 

East coast Fujian Southwest Sichuan 

East coast Shandong Southwest Guizhou 

East coast Jiangxi Southwest Yunnan 

Note: For data available, 30 provinces or cities in China are included, excluding Tibet, Taiwan, 

Hongkong, and Macao.  

 

Table S2 Sector category and corresponding code  

Sector Code Sector Code 

Production sectors    

Agriculture 01 Other manufacturing 22 

Coal mining 02 Scrap and waste 23 

Petroleum and gas 03 
Repair service of metal products, 

machinery and equipment 
24 

Metal mining 04 
Electricity and heat production and 

supply 
25 

Nonmetal mining 05 Gas production and supply 26 

Food processing and tobaccos 06 Water production and supply 27 

Textile 07 Construction 28 

Clothing, leather, fur, etc. 08 Wholesale and retailing 29 

Wood processing and furnishing 09 Transport, storage and post 30 

Paper making, printing, stationery, 

etc. 
10 Hotel and restaurant 31 

Petroleum refining, coking, etc. 11 
Information transmission, software and 

information technology 
32 

Chemical industry 12 Financial intermediation 33 

Nonmetal products 13 Real estate 34 

Metallurgy 14 Leasing and commercial services 35 

Metal products 15 
Scientific research and technical 

services 
36 

General machinery 16 Management of water conservancy, 37 

Specialist machinery 17 
Service to households, repair and other 

services 
38 

Transport equipment 18 Education 39 

Electrical equipment 19 Health and social service 40 

Electronic equipment 20 Culture, sports and entertainment 41 
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Instrument and meter 21 
Public management, social security and 

social organization 
42 

Emission abatement sectors    

SO2 43 Cy 51 

NOx 44 Hg 52 

SD 45 Cd 53 

COD 46 Cr 54 

AN 47 Pb 55 

P 48 As 56 

PP 49 Cu 57 

VP 50 Zn 58 

 

Table S3 Taxable pollutions and the corresponding equivalent units  

Pollution Equivalent unit (equivalent/kg) 

Air pollution 

Sulfure dioxide (SO2) 0.95 

Nitrogen oxides (NOx) 0.95 

Soot and dust (SD) 3.09 

Water pollution 

Chemical oxygen demand (COD) 1 

Ammonia nitrogen (AN) 0.8 

Phosphorus (P) 0.25 

Petroleum pollutants (PP) 0.1 

Volatile phenol (VP) 0.08 

Cyanide (Cy) 0.05 

Aquatic Hg (Hg) 0.0005 

Aquatic Cd (Cd) 0.005 

Aquatic Cr (Cr) 0.04 

Aquatic Pb (Pb) 0.025 

Aquatic As (As) 0.02 

Aquatic Cu (Cu) 0.1 

Aquatic Zn (Zn) 0.2 

 

  



28 

 

Table S4 Environmental tax rates of 16 pollutions in 30 provinces  1 

Province Air pollution  

(Yuan/ kg-equivalent) 

Water pollution 

(Yuan/ kg-equivalent) 

SO2 NOx SD COD AN P PP VP Cy Hg Cd Cr Pb As Cu Zn 

Beijing 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14 

Tianjin 6 8 6 7.5 7.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Hebei 6 6 6 7 7 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 

Shanxi 1.8 1.8 1.8 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 

Inner mongolia 1.8 1.8 1.8 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 

Liaoning 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Jilin 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Heilongjiang 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Shanghai 6.65 7.6 1.2 5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Jiangsu 4.8 4.8 4.8 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 

Zhejiang 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.8 1.8 1.8 1.8 1.8 1.4 1.4 

Anhui 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Fujian 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Jiangxi 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Shandong 6 6 1.2 3 3 1.4 1.4 1.4 1.4 3 3 3 3 3 1.4 1.4 

Henan 4.8 4.8 4.8 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 

Hubei 2.4 2.4 1.2 2.8 2.8 1.4 1.4 1.4 1.4 2.8 2.8 2.8 2.8 2.8 1.4 1.4 

Hunan 2.4 2.4 2.4 3 3 3 3 3 3 3 3 3 3 3 3 3 

Guangdong 1.8 1.8 1.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 

Guangxi 1.8 1.8 1.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 

Hainan 2.4 2.4 2.4 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 

Chongqing 3.5 3.5 3.5 3 3 3 3 3 3 3 3 3 3 3 3 3 
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Sichuan 3.9 3.9 3.9 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 

Guizhou 2.4 2.4 2.4 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 

Yunnan 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Shaanxi 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Gansu 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Qinghai 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Ningxia 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Xinjiang 1.2 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

 2 


