CEEP-BIT WORKING PAPER SERIES

Key Sectors in Carbon Footprint Responsibility at the City Level: A Case Study of Beijing

Jing Tian Julio Lumbreras Celio Andrade Hua Liao

Working Paper 112 http://ceep.bit.edu.cn/english/publications/wp/index.htm

Center for Energy and Environmental Policy Research Beijing Institute of Technology No.5 Zhongguancun South Street, Haidian District Beijing 100081 January 2018

This paper can be cited as: *Tian J, Lumbreras J, Andrade C, Liao H. 2018. Key Sectors in Carbon Footprint Responsibility at the City Level: A Case Study of Beijing. CEEP-BIT Working Paper.*

The authors acknowledge financial support from the China's National Key R&D Program (2016YFA0602603, 2016YFA0602801), National Natural Science Foundation of China (No. 71322306, 71273027, 71521002, 71673026). The views expressed herein are those of the authors and do not necessarily reflect the views of the Center for Energy and Environmental Policy Research.

© 2018 by Tian J, Lumbreras J, Andrade C, and Liao H. All rights reserved.

The Center for Energy and Environmental Policy Research, Beijing Institute of Technology (CEEP-BIT), was established in 2009. CEEP-BIT conducts researches on energy economics, climate policy and environmental management to provide scientific basis for public and private decisions in strategy planning and management. CEEP-BIT serves as the platform for the international exchange in the area of energy and environmental policy.

Currently, CEEP-BIT Ranks 47, top 3% institutions in the field of Energy Economics at IDEAS (http://ideas.repec.org/top/top.ene.htm), and Ranks 52, top 3% institutions in the field of Environmental Economics at IDEAS (http://ideas.repec.org/top/top.env.html).

Yi-Ming Wei

Director of Center for Energy and Environmental Policy Research, Beijing Institute of Technology

For more information, please contact the office:

Address:

Director of Center for Energy and Environmental Policy Research Beijing Institute of Technology No.5 Zhongguancun South Street Haidian District, Beijing 100081, P.R. China

Access:

Tel: +86-10-6891-8551 Fax: +86-10-6891-8651 Email: ceeper@vip.163.com Website: http://ceep.bit.edu.cn/english/index.htm

Key Sectors in Carbon Footprint Responsibility at the City Level: A

Case Study of Beijing

TIAN Jing^{1,2}, Julio Lumbreras³, Celio Andrade³, LIAO Hua^{1,2,4,5*}

 (1 School of Management and Economics, Beijing Institute of Technology, Beijing 100081; 2 Center for Energy and Environment Policy Research, Beijing Institute of Technology, Beijing 100081; 3 Department of Chemical and Environmental Engineering, Technical University of Madrid, (UPM), c/ José Gutiérrez Abascal 2, Madrid, 28006;
 4. Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China; 5. Beijing Key Laboratory of Energy Economics and Environmental Management, Beijing 100081, China.)

Abstract

Purpose – This paper aims to identify key sectors in carbon footprint responsibility, an introduced concept depicting CO₂ responsibilities allocated through the supply chain containing sectoral activities and interactions. In detail, various key sectors could be identified according to comparative advantages in trade, sectoral linkage, and sectoral synergy within the supply chain.

Design/methodology/approach – A semi-closed IO model is employed to make household income-expenditure relationship endogenous through the supply chain where sectoral CO_2 emissions are calculated and the production-based responsibility (PR) principle is evaluated. Thus, according to "carbon footprint responsibility", modified HEM is applied to decompose sectoral CO_2 in terms of comparative advantages in trade, sectoral linkage and synergy. Finally, key sectors are identified via sectoral shares and associated decompositions in carbon footprint responsibility. **Findings** - Compared to 2005, in 2012: (1) the PR principle failed to track sectoral CO_2 flow, and embodied CO_2 in import and interprovincial export increased, with manufacturing contributing the most; (2) manufacturing should take more carbon responsibilities in the internal linkage, and tertiary sectors in the net forward and backward linkage, with sectors enjoying low carbonization in the mixed linkage; (3) inward net CO_2 flows of manufacturing and service sectors were more complicated than their outward ones in terms of involved sectors and economic drivers; and (4) residential effects on CO_2 emissions of traditional sectors increased, urban effects remained larger than rural ones, and manufacturing and tertiary sectors received the largest residential effects.

Originality/value – The value of paper involves: (1) household income-expenditure relationship got endogenous in intermediate supply and demand, corresponding to the rapid urbanization in megacities; (2) key sectors were observed to change flexibly according to real sectoral activities and interaction; and (3) the evaluation of the PR principle was completed ahead of employing a certain CO_2 accounting principle at the city level.

Corresponding author. Email address: <u>liaohua55@163.com</u> (H. Liao) Keywords Carbon responsibility, Carbon footprint, Key sector, Household, Semi-closed input-output model, Modified hypothetical extraction method Paper type Research paper

1 Introduction

Cities have been the main contributors of CO₂ emissions in China (Dhakal, 2009, Dhakal, 2010), the world's largest CO_2 producer since 2007 (Mi et al., 2016). To mitigate CO_2 emissions in practice, the production-based responsibility (PR) principle is fundamental for CO₂ responsibility allocation in China (Liu et al., 2013, Liu et al., 2015). It is acknowledged the PR principle regards household income-expenditure relationship as an exogenous part separate from the intermediate input-output system and only considers producers' responsibilities. However, cities, especially megacities, are characterized by rapid urbanization mixed the large rural-urban disparities (Wang and Yang, 2016, Wang et al., 2012) with income-expenditure relationship (Li et al., 2015b, Wang et al., 2012), allowing households and sectors to interact closely to satisfy intermediate supply and demand. Furthermore, city-level economy has complex cross-boundary interactions such as monetary, commodity, resource and population flows, so associated CO₂ emissions correspondingly flow (Guo et al., 2012, Wang et al., 2014a, Feng et al., 2014, Mi et al., 2016) according to sectoral activities and interactions such as production and round-about production process (Zhao et al., 2016, Zhao et al., 2015, Wang et al., 2013a). Consequently, the PR principle probably distorts sectoral CO₂ responsibilities where three puzzles face cities' sustainability:

- (1) How to make household income-expenditure relation endogenous through the supply chain?
- (2) How to determine carbon responsibilities?
- (3) How to identify key sectors based on (1) and (2)?

Referring to the puzzle (1), the semi-closed input-output (IO) model could make sense (Chen et al., 2015b). It was pioneered by (Batey et al., 1987) and is usually applied in the case of household. In detail, it allows the household consumption column and the income row to be placed into the intermediate input-output system, and then observes the changes in household consumption caused by a change in labor input because of increased output. In other words, although the traditional IO model is a powerful tool to measure residential impacts on CO₂ (Zhang et al., 2015a, Wang and Yang, 2016, Feng et al., 2013), unlike semi-closed IO model, it ignores endogenous effects of residential income-expenditure relationship on the intermediate supply and demand.

Concerning the puzzle (2), a concept "carbon footprint responsibility" is proposed, referring to the CO_2 responsibility allocated along the supply chain containing both sectoral activities and interactions within and outside a city's territorial boundary. Previous studies think of sectors to shoulder different responsibilities (Zhang, 2013, Marques et al., 2012, Bastianoni et al., 2004),

such as PR, consumer-based responsibility (CR), income-based responsibility (IR), and shared responsibility (SR). Among these responsibilities, PR (causing carbon leakage issue), CR and IR disregard the responsibilities shared among producers, consumers and income recipients, and SR has difficulties in finding suitable weights for allocation despite its advantages in shared responsibilities. Under such a circumstance, carbon footprint, referring to accumulated emissions generated from a supply chain or the life cycle of a product (Hertwich and Peters, 2009), provides an outlet to evaluate responsibilities through a supply chain or a whole life cycle.

Regarding puzzle (3), key sectors was pioneered by (Rasmussen, 1956) and represents the sectors with the largest potential to spread growth impulses throughout the economy, which could be identified based on the semi-closed IOT integrated with modified hypothetical extraction method (HEM). As explained in "carbon footprint responsibility", determining sectors' responsibilities needs details of sectoral activities and interactions within and outside the territorial boundary: First, comparative advantages in trade affect key sector identification significantly (Cadarso et al., 2012), but related studies are limited for Chinese cities (Chen et al., 2013, Meng et al., 2015, Chen et al., 2016b, Chen et al., 2016a); Second, it is useful to know sectoral linkages when tracing sectoral CO₂ flows and adopting CO₂ migration policy (Strassert, 1968, Schultz, 1977, Ali, 2015, Wang et al., 2013a, Zhao et al., 2016) using sensitivity analysis (Tarancon and Del Rio, 2007) and HEM (Cella, 1984). However, previous studies lack further exploration of interlinkages among sectors (Tarancon and Del Rio, 2007) and mainly focus on the national level (Zhao et al., 2016, Wang et al., 2013a). In this regard, modified HEM not only details sectoral CO₂ linkage combining effects from technology, structure and final demand, but also elaborates the inward and outward flows between sectors (Duarte et al., 2002); Third, sectoral synergy for CO₂ reduction is in need of more comprehensive exploration into sectoral linkage (Wang et al., 2013a, Zhao et al., 2016, Zhao et al., 2015). It is because sectoral synergy enveloping from sectoral linkage allows producer service industry to optimize and integrate the production and sale process by investing knowledge, information technology, human capital and management strategies (Gebauer, 2008, Ciriaci and Palma, 2016, Castellacci, 2008, Guerrieri and Meliciani, 2005), prompting the innovation capacity and economic efficiency of the whole sectoral network (Coffey and Bailly, 1992, O'Farrell and Hitchens, 1990, MacPherson, 1997) and then making service-oriented economy more probable to develop the low-carbon economy (Yuan et al., 2016).

Beijing, the capital of China, has been explored widely in CO₂ reduction, due to its unique economic status and serious air pollution (Zhang et al., 2015b), increasing urban population, more energy consumption and industrial structure transform lacking R&D development (Wang et al., 2012), accelerated changes in technology, lifestyle, and societal transformation (Feng et al., 2013), good data availability (Wang et al., 2013b) and its useful experience and lessons in industrial

restructuring and greenhouse gas mitigation for cities within and outside Beijing (Wang, 2008, Li et al., 2015a, Hu et al., 2017). Additionally, because of the similarities in CO₂ accounting principle (i.e., PR principle) and compilation principle of input-output tables possessed by 30 key Chinese provinces or cities, it could be useful for these cities to rediscover key sectors in carbon footprint responsibility by using the methods proposed in this paper.

Therefore, to identify key sectors in carbon footprint responsibility, this paper took Beijing in 2005 and 2012 as an example, using the semi-closed IO model integrated with modified HEM. The remainder of the paper is organized as follows: Section 2 introduced method and data, Section 3 analyzed and discussed results, and Section 4 performed conclusions, policy implications and future studies.

2 Model and Data

2.1 Research Framework

A semi-closed IO model is employed to make household income-expenditure relationship endogenous through the supply chain where sectoral CO_2 emissions are calculated and the PR principle is evaluated. Thus, followed by the concept called "carbon footprint responsibility", we applied modified HEM to decompose sectoral CO_2 in terms of comparative advantages in trade, sectoral linkage and synergy, measuring sectoral CO_2 caused by sectoral activities and interactions (Fig. 1). Finally, after ranking all the results based on the first two steps, key sectors could be identified in carbon footprint responsibility.

Fig.1 Framework for sectoral performances and associated CO₂ emissions

Note: Sectors studied include traditional sectors ranging from sector 1 to sector 17 and residential sectors involving S18 (rural household) and S19 (urban household). Related sectoral classifications could be found in the table 2 and 3 in the Appendix.

2.2 Sectoral CO₂ emissions: semi-closed input-output model

Based on the semi-closed IO model, we first examined whether the PR principle could reflect the real origins of CO_2 emissions, by establishing some indexes including direct CO_2 intensity, CO_2 multiplier, total CO_2 emission factors, and sectoral CO_2 ; thus, we could identify the first category of key sectors according to sectoral CO_2 emissions generated by the comparative advantages in trade.

2.2.1 Evaluation of the PR principle with four indexes

The basic traditional input-output model is:

$$X = (I - A)^{-1}Y$$
 (1)

$$Y = H + G + CA + EX - IM \tag{2}$$

Where X is a vector of the total output with element of sector j, x_j , A is the technological coefficient matrix with element a_{ij} representing the requirement of sector i for producing per unit of output of sector j; $(I - A)^{-1}$ is the Leontief inverse matrix; Y is the final demand of sector j, including household consumption H, government consumption G, capital formation CA and net export (EX - IM).

Based on the above traditional IO model, there are four steps explaining how to gain the semi-closed IO model for the studied area whose IOT is competitive:

(i) Changing competitive IOT into uncompetitive IOT

Followed by the basic structure of semi-closed IO model in (Miyazawa, 1976), import is not included in the intermediate IO system, which is also a crucial point distinguishing competitive and uncompetitive IOT in China (Su and Ang, 2013), because competitive IOT does not distinguish origins of products in intermediate IO system. Therefore, the imports should be deducted from each element except the export in IOT in the following formula (Chen et al., 2015a) when considering Beijing's IOT is competitive:

$$\varphi_i = (x_i - e_i) / (x_i + m_i - e_i)$$
(3)

Where φ_i is the proportion of domestic product to the total domestic demand of sector *i*, x_i is the total output of sector *i*, m_i is the import of sector *i*, and e_i is the export of sector *i*. Thus, we multiply each supply row of sector *i* in IOT by φ_i , gaining the domestic products delivered to industries and final demand categories excluding the export.

(ii) Changing the technological coefficient matrix

$$\boldsymbol{A}^* = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{H}^{con} \\ \boldsymbol{H}^{inc} & \boldsymbol{0} \end{bmatrix}$$
(4)

Where A^* is the technological coefficient matrix of the semi-closed IO model, H^{con} is the vector of household consumption coefficient (i.e., the ratio of household consumption of each sector to total output of this sector) and H^{inc} is the row vector of household income coefficient (i.e., the ration of the income of a certain household for each sector to total household income).

(iii) Changing the final demand

$$Y^* = G + CA + (EX - IM)$$
(5)

Where Y^* is the final demand of the semi-closed IO model without household consumption, compared to Y in formula (2).

(iv) Obtaining the total output vector

$$X^* = (I - A^*)^{-1} Y^* \tag{6}$$

Where X^* is the total output vector of the semi-closed IO model.

Due to the data availability concerning energy consumption at sector level in Beijing, energy-related CO_2 is:

$$C_i = W \cdot EF \cdot 44/12 \tag{7}$$

$$C = e(I - A^*)^{-1}Y^*$$
(8)

Where C_i is the energy-related CO₂ of sector *i*, *W* is energy consumption (ton of standard coal equivalent, tce), *EF* is the CO₂ emission factors of energy consumption (t/tce). The value of *EF* is recommended as 0.67 according to Energy Research Institute National Development and Reform Commission, the factor 44/12 is the ration of molecular weights of CO₂ to C, *e* is the diagonal matrix of direct CO₂ intensity (i.e. the ratio of CO₂ emissions of sector *i*, *C_i*, to the total output sector *i*, *x_i*), and *C* is the vector of CO₂ emissions based on the semi-closed IO model.

Therefore, four indexes evaluating the PR principle are: (1) Index 1, the direct CO₂ intensity referring to the direct CO₂ emissions caused by per unit of total output; (2) Index 2, the CO₂ multiplier that is the indirect CO₂ caused by per unit of total output based on the ratio of total CO₂ intensity (i.e., Index 3) to direct CO₂ intensity; (3) Index 3, the total CO₂ emission factor which equals $e(I - A^*)^{-1}$; and (4) Index 4, referring to sectoral CO₂ based on semi-closed IO model.

Additionally, when comparing index 1, 2, and 3 in 2005 and 2012, total output in Beijing's IOT is at current price. So total output in 2012 is supposed to be converted to 2005 constant price to be in harmony with that in 2005:

$$GPI_{i}^{2012} = (GPI_{i}^{2005})^{6} / (GPI_{i}^{2006}) (GPI_{i}^{2007}) (GPI_{i}^{2008}) (GPI_{i}^{2009}) (GPI_{i}^{2010}) (GPI_{i}^{2011})$$
(9)
$$GRP_{i}^{2012} = GRP_{i}^{2005} \times GPI_{i}^{2012}$$
(10)

Where GPI_i^t is the gross regional product price index at sector level in a certain year t for the sector i, and GRP_i^t is the gross regional product at sector level in year t for sector i.

2.2.2 Key sectors according to CO₂ caused by comparative advantages

CO₂ emissions driven by comparative advantages in trade could be fallen into two categories: CO₂ caused by import and export within and outside an area.

First, CO₂ emissions driven by import are:

$$e^{total} = e[(I - A^*)^{-1} - I]$$
(11)

Where e^{total} is the modified CO₂ consumption coefficient, detected from imports using formula (3) to reflect the influence of import on city-level CO₂ caused by per unit of output.

Thus, CO₂ emissions driven by export are:

$$\boldsymbol{C}^{ei} = \boldsymbol{e}(\boldsymbol{I} - \boldsymbol{A}^*)^{-1} \boldsymbol{E} \boldsymbol{X}^{ei} \tag{12}$$

$$C^{eo} = e(I - A^*)^{-1} E X^{eo}$$
(13)

Where C^{ei} represents the CO₂ caused by Beijing's interprovincial export, EX^{ei} means the vector of Beijing' interprovincial export, C^{eo} is the CO₂ induced by its international export and EX^{eo} is the vector of Beijing's international export.

2.3 Sectoral linkage, synergy and CO₂: modified hypothetical extraction method

2.3.1 Key sectors according to CO₂ caused by sectoral linkage

Hypothetical Extraction Method (HEM) is used to measure the significance of one sector on the whole economy by comparing the real economic system where the sector is not extracted with the hypothetical economic system where the sector is extracted, generating forward and backward sectoral linkages. Moreover, modified HEM could further break down the sectoral linkages into four components, namely, internal linkage (*IL*), mixed linkage (*ML*), net forward linkage (*NFL*) and net backward linkage (*NBL*), identifying the associated key sectors in CO₂ reduction.

The sectoral system of the city, Q, is divided into two sectoral clusters, Q_s and Q_{-s} . Q_s represents the sectoral cluster with sectors of same characteristics, and Q_{-s} the cluster with the remaining sectors. And then, the total sectors of the city can be classified:

$$\boldsymbol{Q} = \begin{bmatrix} \boldsymbol{Q}_{s,s} & \boldsymbol{Q}_{s,-s} \\ \boldsymbol{Q}_{-s,s} & \boldsymbol{Q}_{-s,-s} \end{bmatrix}$$
(14)

And then, the calculation of sectoral CO₂ based on semi-closed IO model is:

$$\begin{bmatrix} C_s \\ C_{-s} \end{bmatrix} = \begin{bmatrix} e_s & 0 \\ 0 & e_{-s} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} A^*_{s,s} & A^*_{s,-s} \\ A^*_{-s,s} & A^*_{-s,-s} \end{bmatrix} \begin{bmatrix} X_s \\ X_{-s} \end{bmatrix} + \begin{bmatrix} Y^*_s \\ Y^*_{-s} \end{bmatrix} \end{pmatrix}$$
(15)

$$\begin{bmatrix} \boldsymbol{C}_{s} \\ \boldsymbol{C}_{-s} \end{bmatrix} = \begin{bmatrix} \boldsymbol{e}_{s} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{e}_{-s} \end{bmatrix} \begin{bmatrix} \boldsymbol{B}_{s,s} & \boldsymbol{B}_{s,-s} \\ \boldsymbol{B}_{-s,s} & \boldsymbol{B}_{-s,-s} \end{bmatrix} \begin{bmatrix} \boldsymbol{Y}_{s} \\ \boldsymbol{Y}_{-s}^{*} \end{bmatrix}$$
(16)

Where $\begin{bmatrix} C_s \\ C_{-s} \end{bmatrix}$ is the total CO₂ emissions vector, $\begin{bmatrix} e_s & 0 \\ 0 & e_{-s} \end{bmatrix}$ is the diagonal matrix of direct emission intensity, $\begin{bmatrix} X_s \\ X_{-s} \end{bmatrix}$ is the total output vector, $\begin{bmatrix} A^*_{s,s} & A^*_{s,-s} \\ A^*_{-s,s} & A^*_{-s,-s} \end{bmatrix}$ is the technological coefficient matrix, $(I - A^*)^{-1} = \begin{bmatrix} B_{s,s} & B_{s,-s} \\ B_{-s,s} & B_{-s,-s} \end{bmatrix}$ is the Leontief inverse matrix.

The CO_2 emissions generated by the sectoral system when the sector s is extracted are:

$$\begin{bmatrix} C_s \\ C_{-s} \end{bmatrix} = \begin{bmatrix} e_s & 0 \\ 0 & e_{-s} \end{bmatrix} \begin{bmatrix} (I - A_{s,s}^*)^{-1} & 0 \\ 0 & (I - A_{-s,-s}^*)^{-1} \end{bmatrix} \begin{bmatrix} Y_s^* \\ Y_{-s}^* \end{bmatrix}$$
(17)

The difference between the sectoral CO₂ when the sector s is not extracted, C^{bef} , and those when the sector s is extracted, C^{aft} , is:

$$\boldsymbol{C}^{bef} - \boldsymbol{C}^{aft} = \begin{bmatrix} \boldsymbol{e}_s & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{e}_{-s} \end{bmatrix} \begin{bmatrix} \boldsymbol{C}_s^{bef} - \boldsymbol{C}_s^{aft} \\ \boldsymbol{C}_{-s}^{bef} - \boldsymbol{C}_{-s}^{aft} \end{bmatrix}$$
(18)

$$C^{bef} - C^{aft} = \begin{bmatrix} B_{s,s} - (I - A^*_{s,s})^{-1} & B_{s,-s} \\ B_{-s,s} & B_{-s,-s} - (I - A^*_{-s,-s})^{-1} \end{bmatrix} \begin{bmatrix} Y^*_s \\ Y^*_{-s} \end{bmatrix}$$
(19)

Four elements of sectoral linkages after decomposing the formula (19) are:

$$IL = u'_{s}e_{s}(I - A^{*}_{s,s})^{-1}Y^{*}_{s}$$
(20)

$$ML = u'_{s}e_{s}[B_{s,s} - (I - A^{*}_{s,s})^{-1}]Y^{*}_{s}$$
(21)

$$NFL = u'_s e_s B_{s,-s} Y^*_{-s}$$
(22)

$$NBL = u'_{-s}e_{-s}B_{-s,s}Y_s^*$$
⁽²³⁾

Where *IL* is the CO₂ generated by the products and service created by Q_s itself to satisfy its own final demand. *ML* is the CO₂ generated by the products and service created by Q_s originally but then produced by other sector (cluster), Q_{-s} , and finally repurchased and reproduced by Q_s , aiming at meeting the final demand of Q_s . To meet the final demand of other sector (cluster) Q_{-s} , Y_{-s}^* , there would be CO₂ (*NFL*) generated during the direct production and indirect production of Q_s . To satisfy the final demand of Q_s , Y_s^* , there would be CO₂ (*NBL*) generated during the direct and indirect production of other sector (cluster), Q_{-s} . $u'_s = (1,1...1)$ is the unit vector for sector s and $u'_{-s} = (1,1...1)$ is the unit vector for sector -s.

2.3.2 Key sectors according to CO₂ caused by sectoral synergy

With *NFL* and *NBL*, we cannot figure out sources, destinations and economic drivers of inward and outward CO_2 between sectors. So we further decomposed *NFL* and *NBL* and then got the inward and outward net CO_2 flow of each sector, respectively, identifying the corresponding key sectors. In addition, economic drivers behind the above CO_2 flows could be to explore consumption pattern of key sectors.

Inward net CO₂ flow for each sector is obtained from the decomposition of *NFL* of Q_s , and Q_{-s} consists of all the sectors but sector *s*. In this regard, *NFL* of Q_s could be regarded as the sum of CO₂ caused by sector *s* and then transferred to sector *t* in Q_{-s} :

$$NFL = NFL_{s \to t} = u'_t e_s B_{s,t} Y^*_t, t \in (-s)$$
⁽²⁴⁾

Outward CO₂ flow for each sector could be obtained from the decomposition of *NBL* of Q_s . *NBL* of Q_s could be considered as the sum of CO₂ caused by each sector as a member of Q_{-s} , for example, sector t and then transferred to sector s:

$$\mathbf{NBL} = \mathbf{NBL}_{t \to s} = \mathbf{u}_t' \mathbf{e}_t \mathbf{B}_{t,s} \mathbf{Y}_{s}^*, t \in (-s)$$
⁽²⁵⁾

2.5 Data source and processing

The data of the IO tables origin from Beijing IO Table 2005 and 2012 (Beijing Municipal Bureau of Statistics, 2006a, Beijing Municipal Bureau of Statistics, 2013a), and other data come from Beijing Statistical Yearbook 2005 and 2012 (Beijing Municipal Bureau of Statistics, 2013b, Beijing Municipal Bureau of Statistics, 2006b). Data processing can be undertaken as follows: *(i)* removing the household consumption column and household income row into the intermediate input-output system (Table 1 in the Appendix); *(ii)* classifying the 42 sectors of IOT and the 57 sectors consuming energy into 17 traditional sectors, urban and rural households according to

Industrial Classification for Economic Activities in China (Table 2 and Table 3 in the Appendix); and *(iii)* changing competitive IOT into non-competitive IOT based on the formula (3) to meet the requirements of semi-closed IO Model.

3 Result Analysis and Discussion

3.1 The PR principle, comparative advantage and key sectors

3.1.1 Indexes for evaluating the PR principle

Fig.2 shows that the sectoral shares of direct CO_2 intensity, CO_2 multiplier, total CO_2 emission factor and total CO_2 emissions were different from one another. In detail, CO_2 reduction measures should be implemented to mining (S2), hotels (S7) and other services (S11) under the PR principle (Fig.2 a). When considering indirect CO_2 per unit of output, finance (S9), tendency services (S15), and urban household (S19) should be provided with strict CO_2 mitigation actions (Fig.2 b). But if economic drivers are also taken into account, manufacturing (S3), transportation (S14) and urban household (S19) could be in the greatest need of CO_2 alleviation (Fig.2 d), while energy (S4), RE trade (S10), transportation (S14), urban household (S19) could be given top priorities for CO_2 reduction without thinking of economic drivers (Fig.2 c).

(c) Total CO₂ emission factor

(d) Total CO₂ emissions

Fig. 2 Indexes for evaluating the PR principle

3.1.2 Comparative advantages in carbon footprint responsibility

Fig.3 a and b show imports in Beijing continued exerting positive but not enough effects on sectoral CO_2 reduction, while its interprovincial export generated the most CO_2 emission

compared to other final demand categories. From a sector perspective, for manufacturing (S3), each sector reduced CO_2 due to the impacts of maufacturing's import, while the import of agriculture (S1), WR trade (S6) and transportation (S14) did not prompot its own low-carbon development. Besides, in 2012, manufacturing (S3) witnessed an increasing trend in its largest contribution to CO_2 emissions driven by interprovincial export (Fig.3 c and d).

(c) Export and CO_2 emissions in 2005 (d) Export and CO_2 emissions in 2012

Fig.3 Sectoral CO₂ caused by comparative advantages in trade in Beijing in 2005 and 2012

3.1.3 Discussion

The production-based responsibility (PR) principle could not comprehensively reflect real origins of CO_2 emissions according to the four indexes mentioned in section 3.1.1. The results represent obvious differences in CO_2 flows under different accounting principles, distinct from previous studies highlighting the application of some principles such as PR or CR principle (Wei et al., 2016, Shan et al., 2016), instead of explaining why to choose these principles.

Compared to the modified CO_2 consumption coefficients and CO_2 embodied in interprovincial and international trade used in the paper, although (Feng et al., 2014) assessed sectoral CO_2 caused by interprovincial trade and (Chen et al., 2013) obtained sectoral CO_2 intensity induced by international and interprovincial trade, they all shifted their attention away from decomposing embodied CO_2 emissions or intensity between sectors. Besides, it is the Beijing's trade condition that affects a lot why trade either promotes less intensive CO_2 accumulation or reduces CO_2 emissions on a smaller scale than expected, Beijing is recognized as the import-dependent city with its export deficit of 1.22 billion dollars in 1983 and 210.08 billion dollars in 2015 (Beijing Municipal Bureau of Statistics, 2016), as well as the important entrepot trade city: it imports many raw materials and core components arising from the upstream of Manufacturing from Japan, America, and Europe, after processing and assembling these products, it exports them both domestically and abroad. So its trade and associated CO₂ reduction could not achieve the long-term healthy development easily with more dependence on raw materials instead of advanced technologies, more intractable given the insufficiency in in-house high-tech improvements (Guan et al., 2005, Beijing Municipal Bureau of Statistics, 2010).

3.2 Sectoral linkage and key sectors

3.2.1 Key sectors selected according to sectoral linkage

Fig.4 a shows that in Beijing in 2012, among all sectors, manufacturing (S3) and transportation (S14) continued generating the largest internal CO_2 linkage, of which their interprovincial export accounted for the largest proportion (about 61% and 25%, respectively). That is because along with fewer barriers in interprovincial trade than those in international trade, manufacturing is vital to the secondary industry in Beijing. Meanwhile, energy intensity and population size have played an increasing crucial role in transportation (Wei et al., 2016).

Fig.4 b depicts there was a downward trend in sectoral mixed linkages, indicating it was less carbon intensive in 2012. Especially, in 2005 only manufacturing (S3) had had a largest mixed linkage, but in 2012, S3 became the sector with the smallest mixed linkage, with mining (S2), RE activities (S10) and education (S12) being top 3 sectors. Fig.4 c illustrates tertairy sectors were more carbon intensive in net forward linkage (NFL) in 2012 than secondary and primary sectors. Expecially, RE activities (S10), tendency services (S15), and hotels (S7) were top 3 sectors in 2012 when manufacturing (S3) was characterized obviously by its negative NFL. Fig.4 d presents the distribution of net backward linkage (NBL) was the same as that of the NFL in 2012. Particularly, wholesale and retail trade (S6), public service (S17) and manufacturing (S3) were the top 3 sectors while construction (S5) had the largest negative NBL.

(c) Net Forward linkage in 2005 and 2012
(d) Net Backward linkage in 2005 and 2012
Fig.4 CO₂ linkages of traditional sectors in Beijing in 2005 and 2012 (unit: MtCO₂e). Note: White bubbles with red margin correspond to negative CO₂ linkage.

3.2.2 Discussion

According to varied sectoral CO₂ linkages, CO₂ flows were flexible due to diverse distributions through the supply chain so that producers could not be the only focus on CO₂ reduction. Nonetheless, CO₂ mitigation policies in Beijing hinge on the PR principle, controlling CO₂ by end-of-pipe treatment in energy-intensive sectors, such as manufacturing, and production and supply of electricity, gas and water, rather than tracking the real origin of CO₂ emissions and measuring household effects (The People's Government of Beijing Municipality, 2016a, Yuan et al., 2016, The People's Government of Beijing Municipality, 2013). Simultaneously, more studies explored the impacts of industry structure or a certain sector on city-level CO₂ reduction in the context of economic development and livable environment in Beijing (Creutzig and He, 2009, Wang et al., 2014b, Yu et al., 2015, Mi et al., 2015), needing future attention on the impacts of inter-sectoral coordination (Xia et al., 2015, Tian et al., 2013). Just as (Zhang et al., 2015b), merely considering CO₂ reduction in energy-intensive sectors could result in inefficient technology development and finally increase the marginal costs.

Additionally, In Beijing, service sectors occupied 79.79% of total GDP in 2015 (Beijing Municipal Bureau of Statistics, 2016), turning out more carbon intensive than secondary and primary sectors. In line with (Wei et al., 2016, Tian et al., 2013, Wang et al., 2012), it was the consumption pattern of service sectors that increase CO₂, because the materials provided for per unit of output of service sectors were used inefficiently.

3.3 Sectoral Synergy and key sectors

According to 3.2, *NFL* and *NBL* were more complicated due to their high accumulation in a set of service sectors. Not only has the CO₂ reduction potential of sectoral synergy between producer service sectors and traditional sectors been emphasized in policies or regulations (The People's Government of Beijing Municipality, 2011, The People's Government of Beijing Municipality, 2016a), but also academic requirements for inter-sector cooperation are advocated (Renukappa et al., 2013). However, related studies lacked detailed impacts of sectoral synergy on CO₂ (Zheng et al., 2012, Creutzig and He, 2009, Wang et al., 2014b, Yuan et al., 2016). Meanwhile, the discussion over how to reduce CO₂ emissions via sectoral synergy has been caused, highlighting the significance of combining key sectors with associated factors such as socio-economic, energy-related, and economy-related factors, as well as socio-political acceptability (Zhang et al., 2015b, Rosen, 2009). Therefore, *NFL*, *NBL* and related economic drivers behind were decomposed to select the corresponding key sectors.

3.3.1 Inward net CO₂ flow of selected key sectors

Based on *NFL* in 2012, hotels (S7), RE activities (S10) and tendency services (S15) were selected as the main contributors to total *NFL*. In addition, manufacturing (S3) has obviously decreased its NFL, instructing how to reduce CO_2 emissions caused by this sectoral linkage.

Fig.5 a illustrates most inward CO_2 flows of S7 were driven by the demands from manufacturing (S3), transportation (S14), technical services (S16) and public services (S17). Concerning economic drivers behind S7's flows, Beijing's interprovincial trade of S3 and S16 contributed the most while government consumption of S14 and S17 made the main contributions.

Fig.5 b describes inward flows of RE Activities (S10) was mostly caused by the consumption by manufacturing (S3), WR trade (S6), IT (S8), finance (S9), technical services (S16) and public services (S17). Furthermore, Beijing's interprovincial trade of S3, S6, S8 and S16 contributed more to the inward CO_2 flow of S10 than their other final demands, so did S9's capital formation and S17's government consumption.

Fig.5 c shows the inward CO_2 flows of tendency services (S15) were mainly induced by the consumption of manufacturing (S3), WR trade (S6) and public services (S17), and interprovincial export of S3 and S6 was the largest contributor, and so was government consumption of S17.

Fig.5 d shows that the consumption of construction (S5), WR trade (S6), IT (S8), leisure (S13), transportation (S14), technical services (S16) and public services (S17) caused the most negative inward flows of Manufacturing (S3). More importantly, the import-impacted interprovincial export of S6, S8 and S16 contributed more than their other final demands. Likewise, the international export of S13, capital formation of S5, and government consumption of S14 and S17 were all dependent on import and accounted for the larger proportion of S3's contributions than their other final demands.

Fig.5 Inward net CO_2 flows of hotels, RE activities, tendency services and manufacturing with related economic drivers for each selected sector (unit: MtCO₂e). Note: The pictures on the left

sides of Fig.5 (a),(b),(c) and (d) represent the CO_2 flows and those on the right sides of Fig.5 (a),(b),(c) and (d) correspond to the associated economic drivers.

3.3.2 Outward net CO₂ flow of selected key sectors

According to *NBL* in 2012, manufacturing (S3), WR trade (S6) and public services (S17) were selected as the main contributors. Additionally, construction (S5) had the obviously decreased *NBL*, guiding other sectors how to reduce *NBL*.

Fig.6 a shows the positive outward CO_2 flows of manufacturing (S3) were from the productions of energy (S4) and tenancy services (S15). But its negative outward flow resulted from the production of agriculture (S1), mining (S2), WR trade (S6) and hotels (S7). Besides, S3's interprovincial export contributed more to its outward flows than its other final demand.

Fig.6 b illustrates that the positive outward CO_2 flows of WR Trade (S6) came from productions of RE trade (S10) and tenancy services (S15); however, its negative CO_2 flows from the production of manufacturing (S3). Regarding economic drivers for WR trade (S6), its interprovincial import contributed more than its other final demands.

Fig.6 c depicts the positive outward CO_2 flows of Public Services (S17) were mainly from the production of RE activities (S10), while the production of manufacturing (S3) primarily affected S17's negative flows. Meanwhile, S17's interprovincial export contributed the most.

Fig.6 d shows that the negative outward CO_2 flows of Construction (S5) mostly stemmed from the production of manufacturing (S3), compared to its positive outward ones chiefly coming from the production of manufacturing (S3) in the main in 2005. Besides, the capital formation of S5 contributed more for this obvious change in its outward CO_2 flow than its other final demands.

Fig.6 Outward net CO₂ flow of manufacturing, WR trade, public services and construction with related economic drivers for each selected sector (unit: MtCO₂e). Note: The pictures on the left

sides of Fig.6 (a),(b),(c) and (d) represent the CO_2 flows and those on the right sides of Fig.6 (a),(b),(c) and (d) correspond to the associated economic drivers.

3.3.3 Discussion

In general, the largest CO_2 flows formed between manufacturing and service sectors, and between service sectors in Beijing in 2012. This result indicates that the consumption patterns of manufacturing and service sectors were more carbon intensive through their sectoral interactions, i.e., sectoral synergy. Despite Beijing's achievements in the post-industrial development stage, CO₂ control will not go smoothly without the following problems being handled (The People's Government of Beijing Municipality, 2016b): (1) the modest expansion of manufacturing accesses advanced technology and management insufficiently, making it hard to improve the overall CO₂ reduction potential of secondary industry; (2) service industry itself also face severe problems, such as rural-urban disparity caused by the unbalanced configuration (Zhang et al., 2014), limited spillover effects due to the resemblance to orientation among sectors, deficient excellent proprietary intellectual property rights and professional high-end talents, unimproved systematic marketing mechanism (Zheng et al., 2012) lacking coordination between producer service sectors and Manufacturing (Qiu et al., 2008), and increasing energy use of service industry challenges future CO₂ control (The People's Government of Beijing Municipality, 2016a). To address these problems, our empirical results show outward net CO₂ flows induced by the above-mentioned sectoral interactions were easier to control than inward ones because the latter flows were more complex than the former ones in terms of interacted sectors and economic drivers.

3.4 Residential impacts on sectoral CO₂ and key sectors

Given the increasing residential CO_2 emissions, it is also worth exploring how residents affected sectoral CO_2 with respect to the role of urbanization and rural-urban disparity.

3.4.1 Key sectors influenced by residential effects

Fig.7 shows there was an upward trend in residential impacts on sectoral CO₂ in Beijing where urban impacts continued being much bigger than rural impacts in 2012. Accompanying rapid urbanization, according to (Wang and Yang, 2016), per capita GDP was mainly responsible for residential CO₂ emissions growth in Beijing. Besides, given the unimproved rural-urban disparity, urban households have advantages over rural counterparts in many aspects such as public spending, education, information and human capital (Li et al., 2014), encouraging their wider participations in economic activities and then causing more CO₂ emissions.

At the sector level, the effects of residential labor inputs on CO_2 emissions of the traditional sectors showed volatility, revealing the significance of implementing varied CO_2 mitigation measures. Fig.7 a shows sectoral shares of residential impacts and associated rural-urban disparity basically followed the similar pattern in 2012. In particular, among all sectors, manufacturing (S3),

WR trade (S6), IT (S8), transportation (S14), and technical services (S16) were top 5 sectors in sectoral emissions affected by residential effects and S6, S8 and S16 experienced the most evident positive changes in residential effects they got. However, there were some exceptional sectors witnessing a downward trend in the residential effects they received, and these sectors were construction (S5), hotels (S7), other services (S11), education (S12), tenancy services (S15) and public services (S17). Therefore, distinct CO_2 mitigation measures should be taken, that is to say, for sectors with largest residential effects and positive changes in residential effects, strict measures should be implemented, while for the sectors with the opposite conditions, their learning curves for CO_2 reduction should be valued.

(a) Sectoral shares of total impacts in 2012 and associated rural-urban disparity

(b) Temporal changes

Fig.7 Residential impacts on sectoral CO₂ in 2005 and 2012 in Beijing

3.4.2 Discussion

CO₂ emissions of urban and rural households have been emphasized in several government documents and researches (The People's Government of Beijing Municipality, 2011, The People's Government of Beijing Municipality, 2016a, Wang and Yang, 2016). Particularly, (Wang et al., 2012) thinks that the rapid urbanization played the crucial role in CO₂ growth in Beijing because the increasing income led people to improve their consumption perferences for carbon-intensive products and services. Meanwhile, (Wang and Yang, 2016) believes that there were growing differences between urban and rural effects on sectoral CO₂ emissions including both direct and indirect emissions in Beijing. However, few studies explained how urban and rural households endogenously affect the intermediate IO system to reduce CO_2 emissions at the city level instead of the national level, which is the gap we attempt to fill in section 3.4.1.

4 Conclusion, policy implication and future study

4.1 Conclusion and policy implication

To identify key sectors in carbon footprint responsibility, an introduced concept where CO_2 responsibilities are allocated through the supply chain containing sectoral activities and interactions, we applied a semi-closed IO model to make household income-expenditure relationship endogenous through the supply chain where sectoral CO_2 emissions are calculated and the PR principle is evaluated. Thus, we employed modified HEM to decompose sectoral CO_2 in terms of comparative advantages in trade, sectoral linkage and sectoral synergy. Finally, after ranking all the results based on the first two steps, key sectors could be identified in carbon footprint responsibility. Besides, all the methods and indexes were applied in the case of Beijing for the sake of proposing several feasible perspectives for CO_2 reduction in other Chinese cities.

Firstly, the production-based responsibility (PR) principle could not comprehensively reflect real origins of CO₂ emissions in Beijing, because it ignored CO₂ flows according to various sectoral activities and interactions. Besides, how comparative advantages in trade impacted CO₂ was examined: imports in Beijing continued exerting positive but not enough effects on sectoral CO₂ reduction, while its interprovincial export generated the most CO₂ emission compared to other final demand categories. Additionally, manufacturing generated the highest CO₂ embodied in trade. Therefore, related suggestions are proposed: (1) with the prerequisite for healthy economic development, CO₂ driven by interprovincial export should be reduced and import could be encouraged for CO₂ mitigation; and (2) among all sectors studied, manufacturing should be the major concern in terms of sectoral CO₂ embodied in export and import.

Secondly, key sectors changed with types of the sectoral CO_2 linkages in Beijing. For example, manufacturing had the largest internal CO_2 linkage, RE activities possessed the largest net forward CO_2 linkage and WR trade had the largest net backward CO_2 linkage, without obvious positive mixed CO_2 linkage among sectors. So we suggest that (1) for internal linkage, CO_2 reduction of manufacturing and transportation ranking second deserve more attention; (2) for mixed linkage, maintaining low-carbon trend as a whole be necessary; (3) for net forward linkage, CO_2 induced by the production of hotels, RE activities and tendency services be reduced on a larger scale. Especially, manufacturing's import be encouraged to decarbonize its net forward linkage; and (4) for net backward linkage, CO_2 caused by the consumption of WR trade, public services and manufacturing should be alleviated.

Thirdly, sectoral synergy, the inter-sector decomposition of sectoral linkage, measures how sectoral interactions affect CO_2 flow between sectors. Subsequently, after finding related

economic drivers, key sectors were identified. Results showed (1) inter-sector connections between manufacturing and service sectors, and between service sectors caused the largest CO_2 emissions, and (2) inward net CO_2 flows generated from the above-mentioned sectoral interactions were more complex than their outward net CO_2 flows in terms of interacted sectors and economic drivers. Accordingly, two suggestions are proposed: (1) in the long run, in-house high-tech improvements of manufacturing and sustainable management of service sectors be given priorities during sectoral synergy; and (2) understanding origins and destinations of inward and outward CO_2 flows in practice be necessary for reducing CO_2 , and a CO_2 flow map be made through the supply chain, indicating where to develop technologies to reduce CO_2 via sectoral synergy.

Fourthly, residential impacts on the CO₂ emissions of traditional sectors experienced an upward trend and urban impacts continued being much larger than rural ones. From a sector perspective, manufacturing (S3), WR trade (S6), IT (S8), transportation (S14), and technical services (S16) had the largest residential effects and S6, S8, and S16 experienced the evident positive changes. Nonetheless, there was a downward trend in residential effects received by some sectors including construction (S5), hotels (S7), other services (S11), education (S12), tenancy services (S15) and public services (S17). Therefore, alleviating CO₂ emissions efficiently was available because of the similarities in sectoral shares of urban effects, rural effects and associated temporal changes. More specifically, for sectors with large residential effects and largest positive changes in residential effects, strict measures should be implemented, while for the sectors with opposite conditions, their learning curves for CO₂ reduction should be summarized.

Finally, in China, there are 30 key regions sharing two common characters with Beijing: not only do they have competitive IOT, but also they have been implementing the PR principle for CO_2 accounting. So according to the case study of Beijing, three implications are applied to these regions: (1) their PR principle has the possibilities of not tracking the CO_2 flow; (2) the endogenous effects of household income-expenditure relationship on CO_2 through the supply chain should be emphasized, kept in harmony with the rapid urbanization process; and (3) the framework for identifying the key sectors in carbon footprint responsibility could be a remainder of who to assume CO_2 responsibilities according to sectoral activities and interactions.

4.2 Future study

More details about the impacts of both import and households on city-level CO_2 emissions could be explored. Concerning the impacts of import, there is no in-depth analysis in this paper for the source of the import-induced CO_2 , because we aimed at knowing how the sectoral CO_2 in Beijing were influenced by the total amount of import. In this regard, multi-region input-output model has been developed for the origin of CO_2 embodied in trade for a city (Chen et al., 2016b, Chen et al., 2013, Chen et al., 2016a). Additionally, more attention should be poured into the

distinction between international import and interprovincial import if more improvements for CO_2 emission inventories of Beijing city are in great need. What's more, regarding the role of households played in CO_2 emissions, the endogenous effects of household income-expenditure relationship on CO_2 emissions could be studied more comprehensively in light of income distribution and associated rural-urban disparity, as well as household consumption patterns, because related studies are rare and confined to the country level (Perobelli et al., 2015).

Acknowledgement

We thank the financial supports from the China's National Key R&D Program (2016YFA0602603, 2016YFA0602801), National Natural Science Foundation of China (No. 71322306, 71273027, 71521002, 71673026). The views expressed in this paper are solely authors' own and do not necessarily reflect the views of the supporting agencies and authors' affiliations.

Reference

- ALI, Y. (2015). Measuring CO₂ emission linkages with the hypothetical extraction method (HEM). *Ecological Indicators*, Vol. 54 No., pp. 171-183.
- BASTIANONI, S., PULSELLI, F. M. & TIEZZI, E. (2004). The problem of assigning responsibility for greenhouse gas emissions. *Ecological Economics*, Vol. 49 No. 3, pp. 253-257.
- BATEY, P. W., MADDEN, M. & WEEKS, M. J. (1987). Household income and expenditure in extended input-output models: A comparative theoretical and empirical analysis. *Journal of Regional Science*, Vol. 27 No. 3, pp. 341-356.
- BEIJING MUNICIPAL BUREAU OF STATISTICS (2006a). Beijing Input-output Table 2005. Beijing: China Statistics Press.
- BEIJING MUNICIPAL BUREAU OF STATISTICS (2006b). Beijing Statistical Yearbook. Beijing: China Statistics Press.
- BEIJING MUNICIPAL BUREAU OF STATISTICS (2010). The Interpretation of Second National Investigation on R&D Resources of Beijing. Beijing: Beijing Municipal Bureau of Statistics.
- BEIJING MUNICIPAL BUREAU OF STATISTICS (2013a). Beijing Input-output Table 2012. Beijing: China Statistics Press.
- BEIJING MUNICIPAL BUREAU OF STATISTICS (2013b). Beijing Statistical Yearbook. Beijing: China Statistics Press.
- BEIJING MUNICIPAL BUREAU OF STATISTICS (2016). Beijing Statistical Yearbook. Beijing: China Statistics Press.
- CADARSO, M. Á., L PEZ, L. A. & G MEZ, N. (2012). International trade and shared environmental responsibility by sector. An application to the Spanish economy. *Ecological Economics*, Vol. 83 No. 83, pp. 221–235.
- CASTELLACCI, F. (2008). Technological paradigms, regimes and trajectories: Manufacturing and service industries in a new taxonomy of sectoral patterns of innovation. *Research Policy*, Vol. 37 No. 6, pp. 978-994.
- CELLA, G. (1984). The input-output measurement of interindustry linkages. Oxford Bulletin of Economics and Statistics, Vol. 46 No. 1, pp. 73-84.
- CHEN, G., GUO, S., SHAO, L., LI, J. & CHEN, Z.-M. (2013). Three-scale input–output modeling for urban economy: carbon emission by Beijing 2007. *Communications in Nonlinear Science and*

Numerical Simulation, Vol. 18 No. 9, pp. 2493-2506.

- CHEN, G., WIEDMANN, T., HADJIKAKOU, M. & ROWLEY, H. (2016a). City Carbon Footprint Networks. *Energies*, Vol. 9 No. 8, pp. 602.
- CHEN, G., WIEDMANN, T., WANG, Y. & HADJIKAKOU, M. (2016b). Transnational city carbon footprint networks–Exploring carbon links between Australian and Chinese cities. *Applied Energy*, Vol. No., pp.
- CHEN, Q., DIETZENBACHER, E. & LOS, B. (2015a). Structural decomposition analyses: the differences between applying the semi-closed and the open input–output model. *Environment and Planning A*, Vol. 47 No., pp. 0308518X15597101.
- CHEN, Q., DIETZENBACHER, E. & LOS, B. (2015b). Structural decomposition analyses: the differences between applying the semi-closed and the open input–output model. *Environment and Planning A*, Vol. No., pp. 0308518X15597101.
- CIRIACI, D. & PALMA, D. (2016). Structural change and blurred sectoral boundaries: assessing the extent to which knowledge-intensive business services satisfy manufacturing final demand in Western countries. *Economic Systems Research*, Vol. 28 No. 1, pp. 55-77.
- COFFEY, W. J. & BAILLY, A. S. (1992). Producer services and systems of flexible production. Urban Studies, Vol. 29 No. 6, pp. 857-868.
- CREUTZIG, F. & HE, D. (2009). Climate change mitigation and co-benefits of feasible transport demand policies in Beijing. *Transportation Research Part D: Transport and Environment*, Vol. 14 No. 2, pp. 120-131.
- DHAKAL, S. (2009). Urban energy use and carbon emissions from cities in China and policy implications. *Energy Policy*, Vol. 37 No. 11, pp. 4208–4219.
- DHAKAL, S. (2010). GHG emissions from urbanization and opportunities for urban carbon mitigation. *Current Opinion in Environmental Sustainability*, Vol. 2 No. 4, pp. 277-283.
- DUARTE, R., SANCHEZ-CHOLIZ, J. & BIELSA, J. (2002). Water use in the Spanish economy: an input–output approach. *Ecological Economics*, Vol. 43 No. 1, pp. 71-85.
- FENG, K., HUBACEK, K., SUN, L. & LIU, Z. (2014). Consumption-based CO₂ accounting of China's megacities: The case of Beijing, Tianjin, Shanghai and Chongqing. *Ecological Indicators*, Vol. 47 No., pp. 26-31.
- FENG, Y., CHEN, S. & ZHANG, L. (2013). System dynamics modeling for urban energy consumption and CO₂ emissions: a case study of Beijing, China. *Ecological Modelling*, Vol. 252 No. 1755, pp. 44-52.
- GEBAUER, H. (2008). Identifying service strategies in product manufacturing companies by exploring environment–strategy configurations. *Industrial Marketing Management*, Vol. 37 No. 3, pp. 278-291.
- GUAN, J. C., YAM, R. C. & MOK, C. K. (2005). Collaboration between industry and research institutes/universities on industrial innovation in Beijing, China. *Technology Analysis & Strategic Management*, Vol. 17 No. 3, pp. 339-353.
- GUERRIERI, P. & MELICIANI, V. (2005). Technology and international competitiveness: the interdependence between manufacturing and producer services. *Structural Change and Economic Dynamics*, Vol. 16 No. 4, pp. 489-502.
- GUO, S., SHAO, L., CHEN, H., LI, Z., LIU, J., XU, F., LI, J., HAN, M., MENG, J. & CHEN, Z.-M. (2012). Inventory and input–output analysis of CO₂ emissions by fossil fuel consumption in Beijing 2007. *Ecological Informatics*, Vol. 12 No., pp. 93-100.

- HERTWICH, E. G. & PETERS, G. P. (2009). Carbon footprint of nations: a global, trade-linked analysis. *Environmental Science & Technology*, Vol. 43 No. 16, pp. 6414-20.
- HU, Y. J., LI, X. Y. & TANG, B. J. (2017). Assessing the operational performance and maturity of the carbon trading pilot program: the case study of Beijing's carbon market. *Journal of Cleaner Production*, Vol. No., pp.
- LI, S., FENG, K. & LI, M. (2015a). Identifying the main contributors of air pollution in Beijing. *Journal of Cleaner Production*, Vol. No., pp.
- LI, Y., WANG, X., ZHU, Q. & ZHAO, H. (2014). Assessing the spatial and temporal differences in the impacts of factor allocation and urbanization on urban–rural income disparity in China, 2004– 2010. *Habitat International*, Vol. 42 No. 42, pp. 76-82.
- LI, Y., ZHAO, R., LIU, T. & ZHAO, J. (2015b). Does urbanization lead to more direct and indirect household carbon dioxide emissions? Evidence from China during 1996–2012. *Journal of Cleaner Production*, Vol. 102 No., pp. 103-114.
- LIU, ZHU, GUAN, DABO, MOORE, SCOTT, LEE, HENRY, SU & JUN (2015). Climate policy: Steps to China's carbon peak. *Nature*, Vol. 522 No. 7556, pp. 279-81.
- LIU, Z., GUAN, D., CRAWFORD-BROWN, D., ZHANG, Q., HE, K. & LIU, J. (2013). Energy policy: A low-carbon road map for China. *Nature*, Vol. 500 No. 7461, pp. 143-145.
- MACPHERSON, A. (1997). The role of producer service outsourcing in the innovation performance of New York State manufacturing firms. *Annals of the Association of American Geographers*, Vol. 87 No. 1, pp. 52-71.
- MARQUES, A., RODRIGUES, J., LENZEN, M. & DOMINGOS, T. (2012). Income-based environmental responsibility. *Ecological Economics*, Vol. 84 No. 2, pp. 57-65.
- MENG, J., LIU, J., GUO, S., HUANG, Y. & TAO, S. (2015). The impact of domestic and foreign trade on energy-related PM emissions in Beijing. *Applied Energy*, Vol. No., pp.
- MI, Z.-F., PAN, S.-Y., YU, H. & WEI, Y.-M. (2015). Potential impacts of industrial structure on energy consumption and CO₂ emission: a case study of Beijing. *Journal of Cleaner Production*, Vol. 103 No., pp. 455-462.
- MI, Z., ZHANG, Y., GUAN, D., SHAN, Y., LIU, Z., CONG, R., YUAN, X.-C. & WEI, Y.-M. (2016). Consumption-based emission accounting for Chinese cities. *Applied Energy*, Vol. No., pp.
- MIYAZAWA, K. (1976). Input-Output Analysis and the Structure of Income Distribution, Berlin, Springer-Verlag.
- O'FARRELL, P. N. & HITCHENS, D. (1990). Research policy and review 32. Producer services and regional development: a review of some major conceptual policy and research issues. *Environment* and Planning A, Vol. 22 No. 9, pp. 1141-1154.
- PEROBELLI, F. S., FARIA, W. R. & DE ALMEIDA VALE, V. (2015). The increase in Brazilian household income and its impact on CO₂ emissions: Evidence for 2003 and 2009 from input–output tables. *Energy Economics*, Vol. 52 No., pp. 228-239.
- QIU, L., SHEN, Y. & REN, W. (2008). Industrial relevancy and spatial distribution between producer services and manufacturing in Beijing City. *Acta Geographica Sinica*, Vol. 63 No. 12, pp. 12994310.
- RASMUSSEN, P. N. (1956). Studies in inter-sectoral relations. Economica, Vol. 15 No. 6, pp.
- RENUKAPPA, S., AKINTOYE, A., EGBU, C. & GOULDING, J. (2013). Carbon emission reduction strategies in the UK industrial sectors: an empirical study. *International Journal of Climate Change Strategies and Management*, Vol. 5 No. 3, pp. 304-323.

- ROSEN, M. A. (2009). Key energy related steps in addressing climate change. *International Journal* of Climate Change Strategies and Management, Vol. 1 No. 1, pp. 31-41.
- SCHULTZ, S. (1977). Approaches to identifying key sectors empirically by means of input output analysis. *The Journal of development studies,* Vol. 14 No. 1, pp. 77-96.
- SHAN, Y., LIU, J., LIU, Z., XU, X., SHAO, S., WANG, P. & GUAN, D. (2016). New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. *Applied Energy*, Vol. 184 No., pp. 742-750.
- STRASSERT, G. (1968). Zur bestimmung strategischer sektoren mit hilfe von input-output-modellen. Jahrbücher für Nationalökonomie und Statistik, Vol. No. 3, pp. 211-215.
- SU, B. & ANG, B. W. (2013). Input–output analysis of CO 2 emissions embodied in trade: Competitive versus non-competitive imports. *Energy Policy*, Vol. 56 No. 5, pp. 83-87.
- TARANCON, M. A. & DEL RIO, P. (2007). CO₂ emissions and intersectoral linkages. The case of Spain. *Energy Policy*, Vol. 35 No. 2, pp. 1100-1116.
- THE PEOPLE'S GOVERNMENT OF BEIJING MUNICIPALITY (2011). The Twelfth Five-year Plan for Development and Construction of 'Green Beijing'. Beijing.
- THE PEOPLE'S GOVERNMENT OF BEIJING MUNICIPALITY (2013). Beijing's Air Quality Management Initiatives (2013-2017). Beijing.
- THE PEOPLE'S GOVERNMENT OF BEIJING MUNICIPALITY (2016a). The Thirteenth Five-year Plan for Energy Conservation and Addressing Climate Change of Beijing. Beijing.
- THE PEOPLE'S GOVERNMENT OF BEIJING MUNICIPALITY (2016b). The Thirteenth Five-year Plan for National Economic and Social Development of Beijing. Beijing.
- TIAN, X., CHANG, M., TANIKAWA, H., SHI, F. & IMURA, H. (2013). Structural decomposition analysis of the carbonization process in Beijing: A regional explanation of rapid increasing carbon dioxide emission in China. *Energy Policy*, Vol. 53 No. 1, pp. 279-286.
- WANG, S., FANG, C., GUAN, X., PANG, B. & MA, H. (2014a). Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China's provinces. *Applied Energy*, Vol. 136 No. C, pp. 738-749.
- WANG, X. (2008). Beijing practices tackling climate change. *International Journal of Urban Sciences*, Vol. 12 No. 1, pp. 40-48.
- WANG, Y., HAYASHI, Y., CHEN, J. & LI, Q. (2014b). Changing urban form and transport CO₂ emissions: an empirical analysis of Beijing, China. *Sustainability*, Vol. 6 No. 7, pp. 4558-4579.
- WANG, Y., WANG, W., MAO, G., CAI, H., ZUO, J., WANG, L. & ZHAO, P. (2013a). Industrial CO₂ emissions in China based on the hypothetical extraction method: Linkage analysis. *Energy Policy*, Vol. 62 No. 7, pp. 1238-1244.
- WANG, Y., ZHAO, H., LI, L., LIU, Z. & LIANG, S. (2013b). Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis. *Energy Policy*, Vol. 58 No. 9, pp. 312-318.
- WANG, Z. & YANG, Y. (2016). Features and influencing factors of carbon emissions indicators in the perspective of residential consumption: Evidence from Beijing, China. *Ecological Indicators*, Vol. 61 No., pp. 634-645.
- WANG, Z., YIN, F., ZHANG, Y. & ZHANG, X. (2012). An empirical research on the influencing factors of regional CO 2 emissions: Evidence from Beijing city, China. *Applied Energy*, Vol. 100 No. 4, pp. 277-284.
- WEI, J., HUANG, K., YANG, S., LI, Y., HU, T. & ZHANG, Y. (2016). Driving forces analysis of

energy-related carbon dioxide (CO₂) emissions in Beijing: an input–output structural decomposition analysis. *Journal of Cleaner Production*, Vol. No., pp.

- XIA, X. H., HU, Y., ALSAEDI, A., HAYAT, T., WU, X. D. & CHEN, G. Q. (2015). Structure decomposition analysis for energy-related GHG emission in Beijing: Urban metabolism and hierarchical structure. *Ecological Informatics*, Vol. 26, Part 1 No., pp. 60-69.
- YU, H., PAN, S.-Y., TANG, B.-J., MI, Z.-F., ZHANG, Y. & WEI, Y.-M. (2015). Urban energy consumption and CO₂ emissions in Beijing: current and future. *Energy Efficiency*, Vol. 8 No. 3, pp. 527-543.
- YUAN, R., ZHAO, T. & XU, J. (2016). A subsystem input-output decomposition analysis of CO₂ emissions in the service sectors: A case study of Beijing, China. *Environment, Development and Sustainability,* Vol. No., pp. 1-18.
- ZHANG, X., LUO, L. & SKITMORE, M. (2015a). Household carbon emission research: An analytical review of measurement, influencing factors and mitigation prospects. *Journal of Cleaner Production*, Vol. 103 No., pp. 873-883.
- ZHANG, Y. (2013). The responsibility for carbon emissions and carbon efficiency at the sectoral level: Evidence from China. *Energy Economics*, Vol. 40 No. 2, pp. 967-975.
- ZHANG, Y., LINLIN, X. & WEINING, X. (2014). Analyzing spatial patterns of urban carbon metabolism: A case study in Beijing, China. *Landscape and Urban Planning*, Vol. 130 No. 5, pp. 184-200.
- ZHANG, Y., WANG, H., LIANG, S., XU, M., ZHANG, Q., ZHAO, H. & BI, J. (2015b). A dual strategy for controlling energy consumption and air pollution in China's metropolis of Beijing. *Energy*, Vol. 81 No., pp. 294-303.
- ZHAO, Y., LIU, Y., WANG, S., ZHANG, Z. & LI, J. (2016). Inter-regional linkage analysis of industrial CO₂ emissions in China: An application of a hypothetical extraction method. *Ecological Indicators*, Vol. 61 No., pp. 428-437.
- ZHAO, Y., ZHANG, Z., WANG, S., ZHANG, Y. & LIU, Y. (2015). Linkage analysis of sectoral CO₂ emissions based on the hypothetical extraction method in South Africa. *Journal of Cleaner Production*, Vol. 103 No., pp. 916-924.
- ZHENG, S., WU, J., KAHN, M. E. & DENG, Y. (2012). The nascent market for "green" real estate in Beijing. *European Economic Review*, Vol. 56 No. 5, pp. 974-984.

Appendix

Table 1 Semi-closed Input-Output table

Note: First, regard the "household consumption" (including urban and rural household consumption), originally in the "final demand" column, as the new column in "intermediate demand". Second, divide the "value added" row into "household income" (including urban and rural household income) and "other value added", and then remove the "household income" row into the "intermediate supply". Additionally, urban and rural consumption assigned to each sector is oriented from the original input-output table for Beijing. Nonetheless, limited by data availability, urban and rural income assigned to each sector is calculated based on the ratio of average urban annual income to average rural annual income. Data for urban and rural average income were from Beijing Statistical Yearbook.

Code	Short name	42 sectors of IOT	
S1	Agriculture	Farming, Forestry, Animal Husbandry and Fishery	
S2	Mining	Mining and Wasting of Coal	
		Extraction of Petroleum and Natural Gas	
		Mining of Mental Ores	
		Mining and Processing of Nonmetal Ores	
S3	Manufacturing	Manufacture of Foods and Tobacco	
		Manufacture of Textile	
		Manufacture of Textile Wearing Apparel, Footwear, Caps, Leather,	
		Fur, Feather(Down) and Its products	
		Processing of Timbers and Manufacture of Furniture	
		Papermaking, Printing and Manufacture of Articles of Culture,	
		Education and Sports Activities	
		Processing of Petroleum, Coking, Processing of Nuclear Fuel	
		Chemical Industry	
		Manufacture of Nonmetallic Mineral Products	
		Smelting and Rolling of Metals Products	
		Manufacture of Metal Products	

-14010×2 The classification of $+2$ sectors into 17 broductive sector	Table 2 The	classification	of 42 sectors	into 17	productive sectors
--	-------------	----------------	---------------	---------	--------------------

Continued Table 2

Code	Short name	42 sectors of IOT	
		Manufacture of General Purpose Machinery	
		Manufacture of Special Purpose Machinery	
\$3	Manufacture of Transport Equipment		
		Manufacture of Electrical Machinery and Equipment	
		Manufacture of Communication Equipment, Computer and Other	
		Electronic Equipment	
	Manufacturing	Manufacture of Measuring Instrument and Machinery for Cultural	
	Wanutaeturing	Activity and Office Work	
		Manufacture of Artwork, Other Manufacture	
		Scrap and Waste	
		Manufacture of Metal Products, Machinery and equipment repair	
		services	
		Production and Supply of Electric Power and Heat Power	
S4	Energy	Production and Distribution of Gas	
		Production and Distribution of Water	
S5	Construction	Construction	
S6	WR Trade	Wholesale and Retail Trade	
S7	Hotels	Hotel and Restaurants	
S8	IT	Information Transmission, Computer Service and Software	
S9	Finance	Finance	
S10	RE Trade	Real Estate Trade	
S11	Other Services	Resident Services and Other Services	
S12	Education	Education	
S13	Leisure	Culture, Art, Sports and Recreation	
S14	Transportation	Transportation, Storage and Post	
S15	Tenancy	Tenancy and Commercial Service	
	Services		
S16	Technical	Compositive Technical Service	
510	Services		
		Water, Environment and Municipal Engineering Conservancy	
S17	Public Services	Health Care, Social Security and Social Welfare	
		Publish Manage and Social Organization	

Table 3 The classification of 57 sectors into 17 productive sectors and households

Code	Short name	57 sectors consuming energy
S1	Agriculture	Agriculture, forestry, animal husbandry and fishing
S2	Mining	Mining and washing of coal
		Extraction of petroleum and natural gas

Code	Short name	57 sectors consuming energy		
		Mining and processing of Ferrous metal ores		
		Mining and processing of Non-ferrous metal ores		
		Mining and dressing of nonmetal ores		
52	Mining	Mining of other ores		
		Procession of food from agriculture products		
		Manufacture of foods		
		Manufacture of beverage		
		Manufacture of tobacco		
		Manufacture of textile		
		Manufacture of textile wearing apparel, footwear and caps		
		Manufacture of leather, furs, feather(down) and related products		
		Processing of timber, manufacture of wood, bamboo, rattan, palm and		
		straw products		
S3		Manufacture of furniture		
	Manufacturing	Manufacture of paper and paper products		
		Printing, reproduction of recording media		
		Manufacture of articles for culture, education and sports activity		
		Processing of petroleum, coking, processing of nuclear fuel		
		Manufacture of raw chemical materials and chemical products		
		Manufacture of medicines		
		Manufacture of chemical fibers		
		Manufacture of rubber		
		Manufacture of plastics		
		Manufacture of non-metallic mineral products		
		Smelting and pressing of ferrous metals		
		Smelting and processing of nonferrous metals		
		Manufacture of Metal products		
		Manufacture of general purpose machinery		
		Manufacture of Special purpose machinery		
		Manufacture of Transportation equipment		
		Manufacture of Electrical machinery and equipment		
		Manufacture of communication equipment, computers and other		
		electronic equipment		
		Manufacture of measuring instruments and machinery for culture		
		activity and office work		
		Machinery of artwork and other manufacturing		
		Recycling and disposal of waste		
	Energy	Production and distribution of electric power and heat power		
S4		Production and distribution of gas		
		Production and distribution of water		

Continued	Table	3
00110110000	10010	-

Code	Short name	57 sectors consuming energy	
S5	Construction	Construction	
S6	WR Trade	Wholesale and retail trade	
S7	Hotels	Hotel and restaurants	
S8	IT	Information transmission, computer services and software	
S9	Finance	Finance	
S10	RE trade	Real estate trade	
S11	Other services	Resident services and other services	
S12	Education	Education	
S13	Leisure	Culture, art, sports and recreation	
S14	Transportation	Transportation, storage, post and telecommunications	
S15	Tenancy Services	Tenancy and commercial services	
S16	Technical Service	Scientific studied, technical services and geological prospecting	
S17	Public Services	Public manage and social organization	
		Water, environment and municipal engineering conservancy	
		Health care, social security and social welfare	
S18	Rural	Rural consumption	
	Household		
S19	Urban	Urban consumption	
517	Household		